Skip to main content
Log in

The effect of transition metals (Me: Mn, Cu) on Pt/CeO2/Al2O3 catalysts for the catalytic reduction of NO by CO

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Me/Pt/CeO2/Al2O3 (Me: Mn and Cu) catalysts and Pt/CeO2/Al2O3 catalyst were synthesized by a solution chemical reduction method to reveal the influence of a small amount of transition metals on the CO-SCR reaction. Various of analysis technologies were performed to study the structure and texture, physicochemical property, adsorption ability, redox property and surface state of the catalysts. The results revealed that the BET surface area, CO adsorption ability and redox property of Pt catalyst were enhanced after the addition of transition metals. Moreover, the addition of Cu generated the maximum reduced Pt species, Ce3+ and surface oxygen species. And the synergistic interactions among Cu2+/Cu+, Ce4+/Ce3+ and Pt4+/Pt2+ were conductive to form more oxygen vacancies, which played a key role to promote the CO-SCR performance and resulted in the best CO-SCR activity of Cu modified Pt/CeO2/Al2O3 catalyst at 80–240 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Source gun type: Al Kα, Spot size: 500 μm, Pass energy: 30.0 eV, Energy step size: 0.05 eV

Fig. 7

Source gun type: Al Kα, Spot size: 500 μm, Pass energy: 30.0 eV, Energy step size: 0.06 eV

Fig. 8

Source gun type: Al Kα, Spot size: 500 μm, Pass energy: 30.0 eV, Energy step size: 0.06 eV

Fig. 9

Source gun type: Al Kα, Spot size: 500 μm, Pass energy: 30.0 eV, Energy step size: 0.05 eV

Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y (2017) Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358:1419–1423

    Article  CAS  PubMed  Google Scholar 

  2. Wang S, Xiao P, Xu XL, Bi HT, Liu XY, Zhu JJ (2021) Catalytic CO oxidation and CO + NO reduction conducted on La-Co-O composites: the synergistic effects between Co3O4 and LaCoO3. Catal Today 376:255–261

    Article  CAS  Google Scholar 

  3. Yi Y, Liu H, Chu B, Qin Z, Dong L, He H, Tang C, Fan M, Bin L (2019) Catalytic removal NO by CO over LaNi0.5M0.5O3 (M = Co, Mn, Cu) perovskite oxide catalysts: tune surface chemical composition to improve N2 selectivity. Chem Eng J 369:511–521

    Article  CAS  Google Scholar 

  4. Marberger A, Ferri D, Elsener M, Krocher O (2016) The significance of lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts. Angew Chem Int Ed 128:11989–11994

    Article  CAS  Google Scholar 

  5. Pan KL, Young CW, Pan GT, Chang MB (2020) Catalytic reduction of NO by CO with Cu-based and Mn-based catalysts. Catal Today 348:15–25

    Article  CAS  Google Scholar 

  6. Niu XR, Lei ZT, Yang CH (2019) Catalytic NO reduction by CO over ceria-cobalt oxide catalysts. New J Chem 43:18611–18618

    Article  CAS  Google Scholar 

  7. Cheng XX, Wang LY, Wang ZQ, Zhang MZ, Ma CY (2016) Catalytic performance of NO reduction by CO over activated semicoke supported Fe/Co catalysts. Ind Eng Chem Res 55:12710–12722

    Article  CAS  Google Scholar 

  8. Keav S, Matam S, Ferri D, Weidenkaff A (2014) Structured perovskite-based catalysts and their application as three-way catalytic converters-a review. Catalysts 4:226–255

    Article  CAS  Google Scholar 

  9. Fernández E, Liu L, Boronat M, Arenal R, Concepcion P, Corma A (2019) Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal 9:11530–11541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhang Y, Zhao L, Duan J, Bi SN (2020) Insights into deNOx processing over Ce-modified Cu-BTC catalysts for the CO-SCR reaction at low temperature by in situ DRIFTS. Sep Purif Technol 234: 116,081–116,092.

  11. Liu TK, Qian JN, Yao YY, Shi ZF, Han LY, Liang CY, Li B, Dong LH, Fan MG, Zhang LL (2017) Research on SCR of NO with CO over the Cu0.1La0.1Ce0.8O mixed-oxide catalysts: effect of the grinding. Mol Catal 430:43–53

    Article  CAS  Google Scholar 

  12. Hin HU, Lolla D, Nikolov Z, Chase GG (2016) Pd-Au nanoparticles supported by TiO2 fibers for catalytic NO decomposition by CO. J Ind Eng Chem 33:91–98

    Article  CAS  Google Scholar 

  13. Zhang SH, Li Y, Huang J, Lee J, Kim DH, Frenkel AI, Kim T (2019) Effects of molecular and electronic structures in CoOx/CeO2 catalysts on NO reduction by CO. J Phys Chem C 123:7166–7177

    Article  CAS  Google Scholar 

  14. Savereide L, Nauert SL, Roberts CA, Notestein JM (2018) The effect of support morphology on CoOx/CeO2 catalysts for the reduction of NO by CO. J Catal 366:150–158

    Article  CAS  Google Scholar 

  15. Wang LY, Cheng XX, Wang ZQ, Ma CY, Qin YK (2017) Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO. Appl Catal B 201:636–651

    Article  CAS  Google Scholar 

  16. Liu TK, Yao YY, Wei LQ, Shi ZF, Han LY, Yuan HX, Li B, Dong LH, Wang F, Sun CZ (2017) Preparation and evaluation of copper-manganese oxide as a high-efficiency catalyst for CO oxidation and NO reduction by CO. J Phys Chem C 121:12757–12770

    Article  CAS  Google Scholar 

  17. Iwamoto H, Kameoka S, Xu Y, Nishimura C, Tsai AP (2019) Effects of Cu oxidation states on the catalysis of NO+CO and N2O+CO reactions. J Phys Chem Solids 125:64–73

    Article  CAS  Google Scholar 

  18. Lopes D, Zotin F, Palacio LA (2018) Copper-nickel catalysts from hydrotalcite precursors: the performance in NO reduction by CO. Appl Catal B 237:327–338

    Article  CAS  Google Scholar 

  19. Corrêa CL, Licea YE, Palacio LA, Zotin FM (2017) Effect of composition and thermal treatment in catalysts derived from Cu-Al hydrotalcites-like compounds in the NO reduction by CO. Catal Today 289:133–142

    Article  CAS  Google Scholar 

  20. Shan J, Zhu Y, Zhang S, Zhu T, Rouvimov S, Tao F (2013) Catalytic performance and in situ surface chemistry of pure α-MnO2 nanorods in selective reduction of NO and N2O with CO. J Physl Chem C 117:8329–8335

    Article  CAS  Google Scholar 

  21. Yao XJ, Xiong Y, Sun JF, Gao F, Deng Y, Tang CJ, Dong L (2014) Influence of MnO2 modification methods on the catalytic performance of CuO/CeO2 for NO reduction by CO. J Rare Earth 32:131–138

    Article  CAS  Google Scholar 

  22. Aguilera DA, Molina PA, Moreno S (2011) Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl Catal B 104:144–150

    Article  CAS  Google Scholar 

  23. Sun CZ, Zhu J, Lv YY, Qi L, Liu B, Gao F, Sun KQ, Dong L, Chen Y (2011) Dispersion, reduction and catalytic performance of CuO supported on ZrO2-doped TiO2 for NO removal by CO. Appl Catal B 103:206–220

    Article  CAS  Google Scholar 

  24. Xiong Y, Yao XJ, Tang CJ, Zhang L, Cao Y, Deng Y, Gao F, Dong L (2014) Effect of CO-pretreatment on the CuO-V2O5/γ-Al2O3 catalyst for NO reduction by CO. Catal Sci Technol 4:4416–4425

    Article  CAS  Google Scholar 

  25. Deng CS, Lin B, Dong LH, Zhang FY, Fan MG, Jin GZ, Gao JB, Gao LW, Zhang F, Zhou XP (2015) NO reduction by CO over CuO supported on CeO2-doped TiO2: the effect of the amount of a few CeO2. Phys Chem Chem Phys 17:16092–16109

    Article  CAS  PubMed  Google Scholar 

  26. Bugrova TA, Kharlamova TS, Svetlichnyi VA, Savel’eva AS, Salaev MA, Mamontov GV (2020) Insights into formation of Pt species in Pt/CeO2 catalysts: effect of treatment conditions and metal-support interaction. Catal Today 375:36–47

    Article  CAS  Google Scholar 

  27. Wu ZL, Li MJ, Howe J, Meyer HM III, Overbury SH (2010) Probing defect site on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26(21):16595–16606

    Article  CAS  PubMed  Google Scholar 

  28. Chen HF, Xia Y, Huang H, Gan YP, Luo JM, Fang RY, Zhang J, Zhang WK, Liu XS (2017) Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR. Chem Eng J 330:1195–1202

    Article  CAS  Google Scholar 

  29. Cheng G, Tan XF, Song XJ, Chen X, Yuan DWX, Fu XZ (2019) Visible light assisted thermocatalytic reaction of CO + NO over Pd/LaFeO3. Appl Catal B 251:130–142

    Article  CAS  Google Scholar 

  30. Katta L, Vinod Kumar T, Durgasri DN, Reddy BM (2012) Nanosized Ce1-x LaxO2-δ/Al2O3 solid solutions for CO oxidation: Combined study of structural characteristics and catalytic evaluation. Catal Today 198:133–139

    Article  CAS  Google Scholar 

  31. Pastor-Pérez L, Ramos-Fernández EV, Sepúlveda-Escribano A (2019) Effect of the CeO2 synthesis method on the behaviour of Pt/CeO2 catalysis for the water–gas shift reaction. Int J Hydrogen Energ 44:21837–21846

    Article  CAS  Google Scholar 

  32. Patsalas P, Logothetidis S, Sygellou L, Kennou S (2003) Structure-dependent electronic properties of nanocrystalline cerium oxide films. Phys Rev B 68:035104-1-035104–13

    Article  CAS  Google Scholar 

  33. Nevanperä TK, Ojala S, Laitinen T, Pitkäaho S, Saukko S, Keiski RL (2019) Catalytic oxidation of dimethyl disulfide over bimetallic Cu-Au and Pt-Au catalysts supported on γ-Al2O3, CeO2, and CeO2-Al2O3. Catalysts 9:603–628

    Article  CAS  Google Scholar 

  34. Gómez LE, Sollier BM, Mizrahi MD, Ramallo López JM, Miró EE, Boix AV (2014) Preferential CO oxidation on Pt-Cu/Al2O3 catalysts with low Pt loadings. Int J Hydrogen Energ 39:3719–3729

    Article  CAS  Google Scholar 

  35. Zhang YL, Zhou YB, Wang QY, Shi JJ, Peng C, He LF, Shi L (2018) Manipulating catalytic activity and durability of Pt-modified Cu-Fe-La/g-Al2O3 ternary catalyst for catalytic wet air oxidation: effect of calcination temperature. RSC Adv 8:547–556

    Article  CAS  Google Scholar 

  36. Serrano-Ruiz JC, Huber GW, Sánchez-Castillo MA, Dumesic JA, Rodríguez-Reinoso F, Sepúlveda-Escribano A (2006) Effect of Sn addition to Pt/CeO2-Al2O3 and Pt/Al2O3 Catalysts: an XPS, 119 Sn Mössbauer and microcalorimetry study. J Catal 25:378–388

    Article  CAS  Google Scholar 

  37. Fan XY, Qiu FM, Yang HS, Tian W, Hou TF, Zhang XB (2011) Selective catalytic reduction of NOx with ammonia over Mn-Ce-Ox/TiO2-carbon nanotube composites. Catal Commun 12:1298–1301

    Article  CAS  Google Scholar 

  38. Liu ZM, Zhu JZ, Li JH, Ma LL, Woo SI (2014) Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl Mater Inter 6:14500–14508

    Article  CAS  Google Scholar 

  39. Zhang X, Liu YX, Deng JG, Yu XH, Han Z, Zhang KF, Dai HX (2019) Alloying of gold with palladium: an effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion. Appl Catal B 257:117879–117891.

  40. Shi YJ, Wang JL, Zhou RX (2021) Pt-support interaction and nanoparticle size effect in Pt/CeO2-TiO2 catalysts for low temperature VOCs removal. Chemosphere 265:129127–129134.

  41. Yu K, Diao TT, Zhu JJ, Zhao Z (2018) Perovskite oxides La0.8Sr0.2Co1-xFexO3 for CO oxidation and CO + NO reduction: effect of redox property and surface morphology. Chem Res Chin U 34:119–126

    Article  CAS  Google Scholar 

  42. Deng CS, Huang QQ, Zhu XY, Hu Q, Su WL, Qian JN, Dong LH, Li B, Fan MG, Liang CY (2016) The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO + CO model reaction. Appl Sur Sci 389:1033–1049

    Article  CAS  Google Scholar 

  43. Baltrėnas P, Urbanas D (2020) Catalytic reduction of NOx by CO using monolith corrugated cylindrical Cu-Cr-based catalysts prepared by plasma spray coating. React Kinet, Mech Cat 130:141–158

    Article  CAS  Google Scholar 

  44. Bai YT, Bian X, Wu WY (2019) Catalytic properties of CuO/CeO2-Al2O3 catalysts for low concentration NO reduction with CO. Appl Sur Sci 463:435–444

    Article  CAS  Google Scholar 

  45. Zhu H, Kim J, Ihm S (2009) Selective catalytic reduction of NO with CO on Pt/W-Ce-Zr catalysts. Reac Kinet Mech Cat 97:207–215

    Article  CAS  Google Scholar 

  46. Lee CH, Chen YW (1997) Effect of basic additives on Pt/Al2O3 for CO and propylene oxidation under oxygen-deficient conditions. Ind Eng Chem Res 36:1498–1506

    Article  CAS  Google Scholar 

  47. Carvalho DC, de Souza HSA, Filho JM, Oliveira AC, Campos A, Milet ÉRC, de Sousa FF, Padron-Hernandez E, Oliveira AC (2014) A study on the modification of mesoporous mixed oxides supports for dry reforming of methane by Pt or Ru. Appl Catal A-Gen 473:132–145

    Article  CAS  Google Scholar 

  48. Abbasi Z, Haghighi M, Fatehifar E, Saedy S (2011) Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs. J Hazard Mater 186:1445–1454

    Article  CAS  PubMed  Google Scholar 

  49. Santos ACSF, Damyanova S, Teixeira GNR, Mattos LV, Noronha FB, Passos FB, Bueno JMC (2005) The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane. Appl Catal A-Gen 290:123–132

    Article  CAS  Google Scholar 

  50. Xi K, Wang Y, Jiang K, Xie J, Zhou Y, Lu HF (2020) Support interaction of Pt/CeO2 and Pt/SiC catalysts prepared by nano platinum colloid deposition for CO oxidation. J Rare Earth 38:376–383

    Article  CAS  Google Scholar 

  51. Ozawa M, Okouchi T, Haneda M (2015) Three way catalytic activity of thermally degenerated Pt/Al2O3 and Pt/CeO2-ZrO2 modified Al2O3 model catalysts. Catal Today 242:329–337

    Article  CAS  Google Scholar 

  52. Tomita A, Miki T, Tai Y (2021) Effect of water treatment and Ce doping of Pt/Al2O3 catalysts on Pt sintering and propane oxidation. Res Chem Intermediat 47:2935–2950

    Article  CAS  Google Scholar 

  53. Wang CX, Ren DZ, Du JC, Qin QG, Zhang AM, Chen L, Cui H, Chen JL, Zhao YK (2020) In situ investigations on the facile synthesis and catalytic performance of CeO2-Pt/Al2O3 Catalyst. Catal 10:143–154

    Article  CAS  Google Scholar 

  54. Abbasi Z, Haghighi M, Fatehifar E, Saedy S (2011) Synthesis and physico-chemical characterization of nanostructured Pt/CeO2 catalyst used for total oxidation of toluene. Int J Chem React Eng 9:1–19

    Google Scholar 

  55. Garía-Cortés JM, Pérez-Ramírez J, Illán-Gómez MJ, Kapteijn F, Moulijn JA, Salinas-Martínez de Lecea C (2001) Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene. Appl Catal B 30:399–408

    Article  Google Scholar 

  56. Yao XJ, Xiong Y, Zou WX, Zhang L, Wu SG, Dong X, Gao F, Deng Y, Tang CJ, Chen Z, Dong L, Chen Y (2014) Correlation between the physicochemical properties and catalytic performances of CexSn1-x O2 mixed oxides for NO reduction by CO. Appl Catal B 144:152–165

    Article  CAS  Google Scholar 

  57. Salker AV, Fal Desa MS (2016) Catalytic activity and mechanistic approach of NO reduction by CO over M0.05Co2.95O4 (M = Rh, Pd & Ru) spinel system. Appl Sur Sci 389:344–353

    Article  CAS  Google Scholar 

  58. Chen XY, Lyu YM, Nwabara U, Schwank JW (2019) Reactivity study of CO+NO reaction over Pd/Al2O3 and Pd/CeZrO2 catalysts. Catal Today 323:148–158

    Article  CAS  Google Scholar 

  59. Wu YH, Chu BX, Zhang M, Yi YN, Dong LH, Fan MG, Jin GZ, Zhang LL, Li B (2019) Influence of calcination temperature on the catalytic properties of LaCu0.25Co0.75O3 catalysts in NOx reduction. Appl Sur Sci 481:1277–1286

    Article  CAS  Google Scholar 

  60. Wang YX, Oord R, Berg D, Weckhuysen BM, Makkee M (2017) Oxygen vacancies in reduced Rh/ and Pt/ceria for highly selective and reactive reduction of NO into N2 in excess of O2. ChemCatChem 9:2935–2938

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bureau of Shaoxing Municipal Human Resources and Social Security, the Science and Technology Program of Shaoxing (2021B41010), the Science and Technology Department of Zhejiang Province (2020C01134, LGG19B070002), National Training Programs of Innovation and Entrepreneurship for Undergraduates (202010349023).

Funding

Funding was provided by the Bureau of Shaoxing Municipal Human Resources and Social Security, the Science and Technology Program of Shaoxing (Grant Number 2021B41010), the Science and Technology Department of Zhejiang Province (Grant Numbers 2020C01134, LGG19B70002), and National Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant Number 202010349023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesong Liu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Gao, X., Wang, K. et al. The effect of transition metals (Me: Mn, Cu) on Pt/CeO2/Al2O3 catalysts for the catalytic reduction of NO by CO. Reac Kinet Mech Cat 135, 1553–1571 (2022). https://doi.org/10.1007/s11144-022-02195-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02195-w

Keywords

Navigation