Skip to main content
Log in

Removal of amoxicillin in aqueous solutions by a chemical activated carbons derived from Jujube nuts: adsorption behaviors, kinetic and thermodynamic studies

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The main objective of this work is to assess the efficiency of Amoxicillin (AMX) removal by adsorption on activated carbon (AC). To improve the uptake properties, AC was prepared from Jujube nuts (NJs) and chemically activated by H2SO4. The morphology and physic-chemical properties of the synthesized samples were investigated by XRD and SEM–EDS analyses. The main operational parameters like the contact time, catalyst dose, initial concentration, pH and temperature were optimized step-by-step. The final AMX concentration was analyzed by UV–Vis spectrophotometry. The results showed the efficacy of AC with excellent adsorption properties. The AMX adsorption equilibrium was reached after 20 min of contact time and the Langmuir model gives the most accurate fit of experimental data. To investigate the uptake mechanism, the adsorption constants were determined from the pseudo first order, pseudo second-order and intraparticle diffusion models. It was found that the kinetic of AMX removal is well described by the pseudo second order model. The thermodynamic parameters namely the enthalpy (ΔH° = − 2.099 J K−1 mol−1), entropy (ΔS° = 0.112 J K−1 mol−1) and free energy (ΔG° = − 16.083 to − 17.208 kJ K−1 mol−1) with rising temperature in the range (25–35 °C) indicate an exothermic and spontaneous adsorption. The present study shows that the AC constitutes an efficient process for the removal of AMX from aqueous solution. Finally, the application of this method was extended to real effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Daughton CG (2016) Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis, Sci Total Environ 562:391–426. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2016.03.109

  2. Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK (2020) Occurrence and toxicity of antibiotics in the aquatic environment. Rev Chemosphere 251:126351

    Article  CAS  Google Scholar 

  3. Lyu J, Yang L, Zhang L, Ye B, Wang L (2020) Antibiotics in soil and water in China a systematic review and source analysis. Environ. Pollut 266:115147

    Article  Google Scholar 

  4. Felis E, Kalka J, Sochacki A, Kowalska K, Bajkacz S, Harnisz M, Korzeniewska E (2020) Antimicrobial pharmaceuticals in the aquatic environment–occurrence and environmental implications. Eur J Pharmacol 866:172813

    Article  CAS  Google Scholar 

  5. Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064–1073

    Article  CAS  Google Scholar 

  6. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119(6A):S3–S10

    Article  CAS  Google Scholar 

  7. Andreozzi R, Canterino M, Marotta R, Paxeus N (2005) Antibiotic removal from wastewaters: the ozonation of amoxicillin. J Hazard Mater 122:243–250

    Article  CAS  Google Scholar 

  8. Xiangliang P, Chunnuan D, Daoyong Z, Jianlong W, Guijin M, Ying Ch (2008) Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests. Aquat Toxicol 89:207–213

    Article  Google Scholar 

  9. Kraemer SA, Ramachandran A, Perron GG (2019) Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7:180

    Article  CAS  Google Scholar 

  10. Kerkez-Kuyumcu O, Bayazit SS, Salam MA (2016) Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanopellets. J Ind Eng Chem 36:198–205

    Article  CAS  Google Scholar 

  11. Anh HQ, Le TP, Da Le N, Lu XX, Duong TT, Garnier J, Rochelle-Newall E, Zhang S, Oh NH, Oeurng C, Ekkawatpanit C (2021) Antibiotics in surface water of East and Southeast Asian countries: a focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci Total Environ. 764:142865. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.142865.

  12. Tran NH, Hoang L, Nghiem LD, Nguyen NMH, Ngo HH, Guo W, Trinh QT, Mai NH, Chen H, Nguyen DD, Ta TT, Gin KYH (2019) Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi. Vietnam Sci Total Environ 692:157–174

    Article  CAS  Google Scholar 

  13. Padilla-Robles BG, Alonso A, Martínez-Delgadillo SA, González-Brambila M, Jaúregui-Haza UJ, Ramírez-Muñoz J (2015) Electrochemical degradation of amoxicillin in aqueous media. Chem Eng Process Intensif 94:93–98

    Article  CAS  Google Scholar 

  14. Andreozzi R, Caprio V, Marotta R, Vogna D (2003) Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Res 37(5):993–1004. https://doi.org/10.1016/s0043-1354(02)00460-8

    Article  CAS  PubMed  Google Scholar 

  15. Elmolla ES, Chaudhuri M (2010) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2 /TiO2 photocatalysis. Desalination 252:46–52

    Article  CAS  Google Scholar 

  16. Belaissa Y, Nibou D, Assadi AA, Bellal B, Trari M (2016) A new hetero-junction p -CuO/ n -ZnO for the removal of amoxicillin by photocatalysis under solar irradiation. J Taiwan Inst Chem Eng 68:254–265

    Article  CAS  Google Scholar 

  17. Limousy L, Ghouma I, Ouederni A, Jeguirim M (2017) Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-7404-8

    Article  Google Scholar 

  18. Gmurek M, Horn H, Majewsky M (2015) Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri. Sci Total Environ. 2015(538):58–63. https://doi.org/10.1016/j.scitotenv.2015.08.014

    Article  CAS  Google Scholar 

  19. Xing Zha S, Zhou Y, Jin X, Chen Z (2013) The removal of amoxicillin from wastewater using organobentonite. J Environ Manag 129:569–576

    Article  Google Scholar 

  20. Adriano WS, Veredas V, Santana C, Gonçalves L (2005) Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models. Biochem Eng J 27:132–137. https://doi.org/10.1016/j.bej.2005.08.010

    Article  CAS  Google Scholar 

  21. Ioannis A, Ioannis P, Alexios G, Manariotis ID, Tetiana T, Lotfi S, Adrian B, Alok M, Avelino N (2020) Removal of caffeine, nicotine and amoxicillin from wastewaters by various adsorbents. Rev J Environ Manag 261:110236

    Google Scholar 

  22. Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, Júnior OO, Visentainer JV, Almeida VC (2016) NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem Eng J 288:778–788

    Article  CAS  Google Scholar 

  23. Yap P-S, Lim T-T (2012) Solar regeneration of powdered activated carbon impregnated with visible-light responsive photocatalyst: factors affecting performances and predictive model. Water Res 46(9):3054–3064

    Article  CAS  Google Scholar 

  24. Miguet M, Goetz V, Plantard G, Jaeger Y (2016) Sustainable thermal regeneration of spent activated carbons by solar energy: application to water treatment. Ind Eng Chem Res 55:7003–7011

    Article  CAS  Google Scholar 

  25. Benjedim S, Romero-Cano LA, Pérez-Cadenas AF, Bautista-Toledo MI, Lotfi EM, Carrasco-Marín F (2020) Removal of emerging pollutants present in water using an E-coli biofilm supported onto activated carbons prepared from argan wastes: adsorption studies in batch and fixed bed. Sci Total Environ 720:137491. https://doi.org/10.1016/j.scitotenv.2020.137491

    Article  CAS  PubMed  Google Scholar 

  26. Belhamdi B, Merzougui Z, Trari M, Addoun A (2016) A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). J Appl Res Technol 14(5):354–366

    Article  Google Scholar 

  27. Pereira RG, Veloso CM, da Silva NM, de Sousa LF, Bonomo RC, de Souza AO, da Guarda Souza MO, Fontan RD (2014) Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCl2 as activating agents for BSA and α-lactalbumin adsorption. Fuel Process Technol 126:476–86

    Article  CAS  Google Scholar 

  28. Ribeiro E, Plantard G, Teyssandier F, Maury F, Sadiki N et al (2020) Activated-carbon/TiO2 composites preparation: an original grafting by milling approach for solar water treatment applications. J Environ Chem Eng 8(5):115

    Article  Google Scholar 

  29. Djilani C, Zaghdoudi R, Modarressi A, Rogalski M, Faycal D, Lallam A (2012) Elimination of organic micropollutants by adsorption on activated carbon prepared from agricultural waste. Chem Eng J 189–190:203–212. https://doi.org/10.1016/j.cej.2012.02.059

    Article  CAS  Google Scholar 

  30. Khalil HP, Jawaid M, Firoozian P, Rashid U, Islam A, Akil HM (2013) Activated carbon from various agricultural wastes by chemical activation with KOH: preparation and characterization. J Biobased Mater Bioenergy 7(6):708–714. ISSN 1556-6560. https://doi.org/10.1166/jbmb.2013.1379

  31. Foo KY, Hameed BH (2012) Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresour Technol 112:143–150

    Article  CAS  Google Scholar 

  32. Bouchaaba H, Bellal B, Maachi R, Trari M, Nasrallah N, Mellah A (2016) Optimization of physico-chemical parameters for the photo-oxidation of neutral red on the spinel CO2 SnO4. J Taiwan Inst Chem Eng 58:310–317

    Article  CAS  Google Scholar 

  33. Elmolla ES, Chaudhur M (2010) Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater 173:445–449

    Article  CAS  Google Scholar 

  34. Florence AT, Attwood D (2006) Physicochemical principles of pharmacy, 4th edition (ISBN: 0 85369 608X), Pharmaceutical Press, Chapter 3: Physicochemical properties of drugs in solution

  35. Bundgaard H (1977) Polymerization of penicillins. II. Kinetics and mechanism of dimerization and self-catalyzed hydrolysis of amoxycillin in aqueous solution. Acta Pharm Suec 14(1):47–66

    CAS  PubMed  Google Scholar 

  36. Andreozzi R, Caprio V, Ciniglia C, De Champdore M, Giudice RL, Marotta R, Zuccato E (2004) Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environ Sci Technol 38:6832–6838

    Article  CAS  Google Scholar 

  37. Elmolla ES, Chaudhuri M (2010) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. J Desalination 252(1–3):46–52

    Article  CAS  Google Scholar 

  38. Cazetta AL, Vargas AM, Nogami EM, Kunita MH, Guilherme MR, Martins AC, Silva TL, Moraes JC, Almeida VC (2011) NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem Eng J 174(1):117–25

    Article  CAS  Google Scholar 

  39. Banat F, Al-Asheh S, Al-Makhadmeh L (2003) Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem 39(2):193–202

    Article  CAS  Google Scholar 

  40. Ho YS, Mckay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot 76(2):183–191. ISSN 0957-5820. https://doi.org/10.1205/095758298529326

  41. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I. Theor J Colloid Interface Sci 47(3):755–765. ISSN 0021–9797. https://doi.org/10.1016/0021-9797(74)90252-5

  42. Ferrandon O, Bouabane H, Mazet M (1995) Contribution à l’étude de la validité de différents modèles, utilisés lors de l’adsorption de solutés sur. J Water Sci 8(2):183–200

    CAS  Google Scholar 

  43. Goldberg S (2005) Equations and models describing adsorption processes in soils. Soil Science Society of America, Madison. Chemical Processes in Soils. SSSA Book Series, No. 8

  44. Dada AO, Adekola FA, Odebunmi EO (2017) Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite. Cogent Chem 3(1):1351653

    Article  Google Scholar 

  45. Ahmad MA, Puad NAA, Bello OS (2014) Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour Ind 6:18–35

    Article  Google Scholar 

  46. Perrin CL (2017) Linear or nonlinear least-squares analysis of kinetic data. J Chem Educ 94:669–672

    Article  CAS  Google Scholar 

  47. Djebri A, Belmedani M, Belhamdi B et al (2021) The combined effectiveness of activated carbon (AC)/ZnO for the adsorption of mebeverine hydrochloride/photocatalytic degradation under sunlight. Reac Kinet Mech Cat 132:529–546. https://doi.org/10.1007/s11144-021-01932-x

    Article  CAS  Google Scholar 

  48. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–9. https://doi.org/10.1016/j.jhazmat.2005.12.043

    Article  CAS  PubMed  Google Scholar 

  49. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  50. Mekatel H, Amokrane S, Bellal B, Trari M, Nibou D (2012) Photocatalytic reduction of Cr (VI) on nanosized Fe2O3 supported on natural Algerian clay: characteristics, kinetic and thermodynamic study». Chem Eng J 200–202:611–618

    Article  Google Scholar 

  51. Kalpana YK, Basha MS (2012) Efficient removal of Brilliant Blue G (BBG) from aqueous solutions by marine Aspergillus wentii: kinetics, equilibrium and process design. Ecol Eng 41:74–83

    Article  Google Scholar 

  52. Homem V, Alves A, Santos L (2010) Amoxicillin removal from aqueous matrices by sorption with almond shell ashes. Int J Environ Anal Chem 90(14–15):1063–1084. https://doi.org/10.1080/03067310903410964

    Article  CAS  Google Scholar 

  53. Dada AO (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from University Yahia Fares of Medea, Hall of Technology, Faculty of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahia Belaissa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 952 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaissa, Y., Saib, F. & Trari, M. Removal of amoxicillin in aqueous solutions by a chemical activated carbons derived from Jujube nuts: adsorption behaviors, kinetic and thermodynamic studies. Reac Kinet Mech Cat 135, 1011–1030 (2022). https://doi.org/10.1007/s11144-022-02159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02159-0

Keywords

Navigation