Skip to main content
Log in

Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone

  • Process Engineering for Pollution Control and Waste Minimization
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A chemical-activated carbon (CAC) was prepared by phosphoric acid activation of olive stone. The CAC was characterized using various analytical techniques and evaluated for the removal of amoxicillin from aqueous solutions under different operating conditions (initial concentration, 12.5–100 mg L−1, temperature, 20–25 °C, contact time, 0–7000 min). The CAC characterization indicates that it is a microporous carbon with a specific surface area of 1174 m2/g and a pore volume of 0.46 cm3/g and contains essentially acidic functional groups. The adsorption tests indicated that 93 % of amoxicillin was removed at 20 °C for 25 mg L−1 initial concentration. Moreover, it was found that adsorption capacity increased with contact time and temperature. Kinetic study shows that the highest correlation was obtained for the pseudo-second-order kinetic model, which confirms that the process of adsorption of amoxicillin is mainly chemisorption. Using the intraparticle diffusion model, the mechanism of the adsorption process was determined. The equilibrium data analysis showed that the Sips and Langmuir models fitted well the experimental data with maximal adsorption capacities of 67.7 and 57 mg/g, respectively, at 25 °C. The chemical-activated carbon of olive stones could be considered as an efficient adsorbent for amoxicillin removal from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adriano WS, Veredas V, Santana CC, Gonçalves LRB (2005) Adsorption of amoxicillin on chitosan beads: kinetics, equilibrium and validation of finite bath models. Biochem Eng J 27(2):132–137

    Article  CAS  Google Scholar 

  • Altenor S, Carene-Melane B, Gaspard S (2009) Activated carbons from lignocellulosic waste materials for water treatment: a review. Int J Environ Technol Manag 10(3–4):308–326

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Marotta R, Radovnikovic A (2003a) Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation. J. Haz. Mater. 103(3):233–246

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Marotta R, Vogna D (2003b) Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Res 37(5):993–1004

    Article  CAS  Google Scholar 

  • Andreozzi R, Canterino M, Marotta R, Paxeus N (2005) Antibiotic removal from wastewaters: the ozonation of amoxicillin. J Hazard Mater 122(3):243–250

    Article  CAS  Google Scholar 

  • Ay F, Kargi F (2010) Advanced oxidation of amoxicillin by Fenton’s reagent treatment. J. Haz. Mater. 179(1–3):622–627

    Article  CAS  Google Scholar 

  • Bailon-Perez MI, Garcia-Campana AM, Cruces-Blanco C, del Olmo IM (2008) Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis. J Chromatogr A 1185:273–280

    Article  CAS  Google Scholar 

  • Barrera D, Villarroel-Rocha J, Tara JC, Basaldella EI, Sapag K (2014) Synthesis and textural characterization of a templated nanoporous carbon from MCM-22 zeolite and its use as adsorbent of amoxicillin and ethinylestradiol. Adsorption 20(8):967–976

    Article  CAS  Google Scholar 

  • Belala Z, Jeguirim M, Belhachemi M, Addoun F, Trouvé G (2011) Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: kinetic, equilibrium and thermodynamic studies. Desalination 271(1–3):80–87

    Article  CAS  Google Scholar 

  • Benadjemia M, Millière L, Reinert L, Benderdouche N, Duclaux L (2011) Preparation, characterization and methylene blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process Technol 92(6):1203–1212

    Article  CAS  Google Scholar 

  • Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769

    Article  CAS  Google Scholar 

  • Bohli T, Ouederni A, Fiol N, Villaescusa I (2015) Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. Comptes Rendus Chim. 18(1):88–99

    Article  CAS  Google Scholar 

  • Boxall A (2008) KNAPPE: report on environmental impact and health effects of PPs. Bruxelles, European Commission

  • Brown SD, Tauler R, Walczak B (2009) Subject index, Compr. Chemom. Elsevier, Oxford, pp. 541–634

    Book  Google Scholar 

  • Budyanto S, Soedjono S, Irawaty W, Indraswati N (2008) Studies of adsorption equilibria and kinetics of amoxicillin from simulated wastewater using activated carbon and natural bentonite. J Env Prot Sci 2:72–80

    Google Scholar 

  • Campos JL, Garrido J, Mendez R, Lema J (2001) Effect of two broad-spectrum antibiotics on activity and stability of continuous nitrifying system. Appl Biochem Biotechnol 95(1):1–10

    Article  CAS  Google Scholar 

  • Chayid MA, Ahmed MJ (2015) Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: isotherms, kinetics, and thermodynamics studies. J. Environ. Chem. Eng. 3:1592–1601

    Article  CAS  Google Scholar 

  • Coleman NT, McClung AC, Moore DP (1956) Formation constants for Cu(II)-peat complexes. Science 123:330–331

    Article  CAS  Google Scholar 

  • Costanzo SD, Murby J, Bates J (2005) Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51:218–223

    Article  CAS  Google Scholar 

  • Demir H, Top A, Balköse D, Ülkü S (2008) Dye adsorption behavior of Luffa cylindrica fibers. J. Haz. Mater. 153(1–2):389–394

    Article  CAS  Google Scholar 

  • Ertaş M, Acemioğlu B, Alma MH, Usta M (2010) Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust. J. Haz. Mater. 183(1–3):421–427

    Article  Google Scholar 

  • Garba ZN, Rahim AA (2016) Evaluation of optimal activated carbon from an agricultural waste for the removal of para-chlorophenol and 2,4-dichlorophenol. Process Saf Environ Prot 102:54–63

    Article  CAS  Google Scholar 

  • Gharib H, Ouederni A (2005) Transformation du grignon d’olive Tunisien en charbon actif par voie chimique à l’acide phosphorique, Récents Progrès en Génie des Procédés, ISBN 2-910239-66-7, Paris.

  • Ghouma I, Jeguirim M, Dorge S, Limousy L, Matei Ghimbeu C, Ouederni A (2015) Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chim 18(1):63–74

    Article  CAS  Google Scholar 

  • Girgis BS, El-Hendawy ANA (2002) Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous Mesoporous Mater 52(2):105–117

    Article  CAS  Google Scholar 

  • Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5(2):212–223

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36(2):357–393

    Article  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci. Total Environ 225(1–2):109–118

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  • Ho YS (2006) Review of second-order models for adsorption systems. J. Haz. Mater. B136:681–689

    Article  Google Scholar 

  • Hughes SR, Kay P, Brown LE (2016) Impact of anti-inflammatories, beta-blockers and antibiotics on leaf litter breakdown in freshwaters. Environ Sci Pollut Res 23(4):3956–3962

    Article  CAS  Google Scholar 

  • Jellali S, Wahab MA, Anane M, Riahi K, Jedidi N (2011) Biosorption characteristics of ammonium from aqueous solutions onto Posidonia Oceania (L.) fibers. Desalination 270:40–49

    Article  CAS  Google Scholar 

  • Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40(8):1686–1696

    Article  CAS  Google Scholar 

  • Kerkez-Kuyumcu O, Bayazit SS, Salam MA (2016) Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanopellets. J Ind Eng Chem 36:198–205

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434

    Article  Google Scholar 

  • Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids and Surfaces A: Physicochem Eng Aspects 437:3–32

    Article  CAS  Google Scholar 

  • Leofanti G, Padovan M, Tozzda G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219.

  • Lienert J, Güdel K, Escher BI (2007) Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol 41(12):4471–4478

    Article  CAS  Google Scholar 

  • Lin K, Pan J, Chen Y, Cheng R, Xu X (2009) Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J Haz Mater 161(1):231–240

    Article  CAS  Google Scholar 

  • Lladó J, Lao-Luque C, Ruiz B, Fuente E, Solé-Sardans M, Dorado AD (2015) Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics. Process Saf Environ Prot 95:51–59

    Article  Google Scholar 

  • Mansouri H, Carmona RJ, Gomis-Berenguer A, Souissi-Najar S, Ouederni A, Ania CO (2015) Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. J Colloid Interface Sci 449:252–260

    Article  CAS  Google Scholar 

  • Mitrogiannis D, Markou G, Çelekli A, Bozkurt H (2015) Biosorption of methylene blue onto Arthrospira Platensis biomass: kinetic, equilibrium and thermodynamic studies. J Environ Chem Eng 3(2):670–680

    Article  CAS  Google Scholar 

  • Moarefian A, Golestani HA, Bahmanpour H (2014) Removal of amoxicillin from wastewater by self-made Polyethersulfone membrane using nanofiltration. J. Environ. Health Sci. Eng. 12(1):1–10

    Article  Google Scholar 

  • Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M (2013) Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem Eng J 217:119–128

    Article  CAS  Google Scholar 

  • Omidvar M, Mahmoud Mousavi S, Soltanieh M, Safekordi AA (2014) Preparation and characterization of poly (ethersulfone) nanofiltration membranes for amoxicillin removal from contaminated water. J Environ Health Sci Eng 12(1):1–10

    Article  Google Scholar 

  • Prahas D, Kartika Y, Indraswati N, Ismadji S (2008) Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem Eng J 140(1–3):32–42

    Article  CAS  Google Scholar 

  • Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res 43(9):2419–2430

    Article  CAS  Google Scholar 

  • Ren L, Zhang J, Li Y, Zhang C (2011) Preparation and evaluation of cattail fiber-based activated carbon for 2,4-dichlorophenol and 2,4,6-trichlorophenol removal. Chem Eng J 168(2):553–561

    Article  CAS  Google Scholar 

  • Robinson I, Junqua G, Coillie RV, Thomas O (2006) Trends in the detection of pharmaceutical products, and their impact and mitigation in water and wastewater in North America. Anal Bioanal Chem 387:1143–1151

    Article  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759

    Article  CAS  Google Scholar 

  • Singh SK, Townsend TG, Mazyck D, Boyer TH (2012) Equilibrium and intra-particle diffusion of stabilized landfill leachate onto micro- and meso-porous activated carbon. Water Res 46:491–499

    Article  CAS  Google Scholar 

  • Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16(5):490–495

    Article  CAS  Google Scholar 

  • Srivastava V, Sharma YC, Sillanpää M (2015) Application of nano-magnesso ferrite (n-MgFe2O4) for the removal of Co2+ ions from synthetic wastewater: kinetic, equilibrium and thermodynamic studies. Appl Surf Sci 338:42–54

    Article  CAS  Google Scholar 

  • Teng H, Yeh TS, Hsu LY (1998) Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 36(9):1387–1395

    Article  CAS  Google Scholar 

  • Ternes TA, Bonerz M, Herrmann N, Teiser B, Andersen HR (2007) Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances. Chemosphere 66(5):894–904

    Article  CAS  Google Scholar 

  • Trovó AG, Melo SAS, Nogueira RFP (2008) Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process—application to sewage treatment plant effluent. J Photochem Photobiol Chem 198(2–3):215–220

    Article  Google Scholar 

  • Wang L, Zhang J, Zhao R, Li C, Li Y, Zhang C (2010) Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: equilibrium, kinetic and thermodynamic studies. Desalination 254(1–3):68–74

    Article  CAS  Google Scholar 

  • Xing Zha S, Zhou Y, Jin X, Chen Z (2013) The removal of amoxicillin from wastewater using organobentonite. J Environ Manag 129:569–576

    Article  Google Scholar 

  • Yorgun S, Yildiz D (2015) Preparation and characterization of activated carbons from paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131.

  • Zouiten A, Beltifa A, Van Loco J, Ben Mansour H, Reyns T (2016) Ecotoxicological potential of antibiotic pollution–industrial wastewater: bioavailability, biomarkers, and occurrence in Mytilus galloprovincialis. Environmental Science and Pollution Research. doi:10.1007/s11356-016-6713-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Limousy.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limousy, L., Ghouma, I., Ouederni, A. et al. Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ Sci Pollut Res 24, 9993–10004 (2017). https://doi.org/10.1007/s11356-016-7404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7404-8

Keywords

Navigation