Skip to main content
Log in

A simple and low cost method for the synthesis of metallic cobalt nanoparticles without further reduction as an effective catalyst for Fischer–Tropsch Synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this research work, a simple, one-step and environmentally friendly method is reported for synthesizing metallic Co nanoparticles (NPs) and its application in Fischer–Tropsch Synthesis. In this attractive method, metallic CoNPs decorated on the alumina surface are prepared by auto-reduction of cobalt (II) formate dihydrate at 380 °C for 4 h under high-pure nitrogen atmosphere. During the thermal decomposition process, hydrogen and carbon monoxide gases, which are reducing agents, are released. The decomposed samples were directly used in the reaction without typical hydrogen pretreatment. For comparison, the Co/γ-Al2O3 catalyst was also prepared by the traditional impregnation method, which includes the calcination and reduction steps. Different characterization techniques including TGA-DTA, XRD, FESEM, EDX mapping and BET were carried out to investigate the structural and textural properties of samples. CO conversion of the auto-reduced Co/γ-Al2O3 catalyst was almost twofold of the reduced catalyst by H2. The characterization data indicated that auto-reduction method leads to better dispersion and smaller CoNPs production than those prepared by H2 reduction pretreatment. Therefore, the active sites for the reaction increased, leading to an increase in CO conversion. The results suggested that the catalyst reduction under H2 stream is unnecessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li X, Hao X, Abudula A, Guan G (2016) Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4(31):11973–12000. https://doi.org/10.1039/C6TA02334G

    Article  CAS  Google Scholar 

  2. Wang H, Gao Q, Li H, Han B, Xia K, Zhou C (2019) One-pot synthesis of a novel hierarchical Co(II)-doped TiO2 nanostructure: toward highly active and durable catalyst of peroxymonosulfate activation for degradation of antibiotics and other organic pollutants. Chem Eng J 368:377–389. https://doi.org/10.1016/j.cej.2019.02.124

    Article  CAS  Google Scholar 

  3. Roy P, Srivastava SK (2019) Nanomaterials for electrochemical energy storage devices. Wiley, Hoboken

    Book  Google Scholar 

  4. Pei Y, Li Z, Li Y (2017) Highly active and selective Co-based Fischer-Tropsch catalysts derived from metal–organic frameworks. AIChE J 63(7):2935–2944. https://doi.org/10.1002/aic.15677

    Article  CAS  Google Scholar 

  5. Cheng Q, Tian Y, Lyu S, Zhao N, Ma K, Ding T, Jiang Z, Wang L, Zhang J, Zheng L, Gao F, Dong L, Tsubaki N, Li X (2018) Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis. Nat Commun 9(1):3250. https://doi.org/10.1038/s41467-018-05755-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mandić M, Todić B, Živanić L, Nikačević N, Bukur DB (2017) Effects of catalyst activity, particle size and shape, and process conditions on catalyst effectiveness and methane selectivity for Fischer-Tropsch reaction: a modeling study. Ind Eng Chem Res 56(10):2733–2745. https://doi.org/10.1021/acs.iecr.7b00053

    Article  CAS  Google Scholar 

  7. Rauch R, Kiennemann A, Sauciuc A (2013) Chapter 12 - Fischer-Tropsch synthesis to biofuels (BtL Process). In: Triantafyllidis KS, Lappas AA, Stöcker M (eds) The role of catalysis for the sustainable production of bio-fuels and bio-chemicals. Elsevier, Amsterdam, p 398

    Google Scholar 

  8. Li J, He Y, Tan L, Zhang P, Peng X, Oruganti A, Yang G, Abe H, Wang Y, Tsubaki N (2018) Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology. Nat Catal 1(10):787–793. https://doi.org/10.1038/s41929-018-0144-z

    Article  CAS  Google Scholar 

  9. Gnanamani MK, Hamdeh HH, Jacobs G, Qian D, Liu F, Hopps SD, Thomas GA, Shafer WD, Xiao Q, Hu Y, Davis BH (2016) Fischer-Tropsch synthesis: effect of Cu, Mn and Zn addition on activity and product selectivity of cobalt ferrite. RSC Adv 6(67):62356–62367. https://doi.org/10.1039/C6RA10150J

    Article  CAS  Google Scholar 

  10. Rahmati M, Huang B, Schofield LM, Fletcher TH, Woodfield BF, Hecker WC, Bartholomew CH, Argyle MD (2018) Effects of Ag promotion and preparation method on cobalt Fischer-Tropsch catalysts supported on silica-modified alumina. J Catal 362:118–128. https://doi.org/10.1016/j.jcat.2018.03.027

    Article  CAS  Google Scholar 

  11. Garcilaso V, Barrientos J, Bobadilla LF, Laguna OH, Boutonnet M, Centeno MA, Odriozola JA (2019) Promoting effect of CeO2, ZrO2 and Ce/Zr mixed oxides on Co/γ-Al2O3 catalyst for Fischer-Tropsch synthesis. Renew Energy 132:1141–1150. https://doi.org/10.1016/j.renene.2018.08.080

    Article  CAS  Google Scholar 

  12. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212(1):17–60. https://doi.org/10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  13. Subramanian V, Cheng K, Lancelot C, Heyte S, Paul S, Moldovan S, Ersen O, Marinova M, Ordomsky VV, Khodakov AY (2016) Nanoreactors: an efficient tool to control the chain-length distribution in Fischer-Tropsch synthesis. ACS Catal 6(3):1785–1792. https://doi.org/10.1021/acscatal.5b01596

    Article  CAS  Google Scholar 

  14. Prieto G, Martínez A, Concepción P, Moreno-Tost R (2009) Cobalt particle size effects in Fischer-Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J Catal 266(1):129–144. https://doi.org/10.1016/j.jcat.2009.06.001

    Article  CAS  Google Scholar 

  15. Yang C, Zhao B, Gao R, Yao S, Zhai P, Li S, Yu J, Hou Y, Ma D (2017) Construction of synergistic Fe5C2/Co heterostructured nanoparticles as an enhanced low temperature Fischer-Tropsch synthesis catalyst. ACS Catal 7(9):5661–5667. https://doi.org/10.1021/acscatal.7b01142

    Article  CAS  Google Scholar 

  16. Xie J, Paalanen PP, van Deelen TW, Weckhuysen BM, Louwerse MJ, de Jong KP (2019) Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nat Commun 10(1):167. https://doi.org/10.1038/s41467-018-08019-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Todic B, Bhatelia T, Froment GF, Ma W, Jacobs G, Davis BH, Bukur DB (2013) Kinetic model of fischer–tropsch synthesis in a slurry reactor on Co–Re/Al2O3 catalyst. Ind Eng Chem Res 52(2):669–679. https://doi.org/10.1021/ie3028312

    Article  CAS  Google Scholar 

  18. Mosayebi A, Abedini R (2017) Detailed kinetic study of Fischer – Tropsch synthesis for gasoline production over CoNi/HZSM-5 nano-structure catalyst. Int J Hydrogen Energy 42(44):27013–27023. https://doi.org/10.1016/j.ijhydene.2017.09.060

    Article  CAS  Google Scholar 

  19. den Otter JH, Nijveld SR, de Jong KP (2016) Synergistic promotion of Co/SiO2 Fischer-Tropsch catalysts by niobia and platinum. ACS Catal 6(3):1616–1623. https://doi.org/10.1021/acscatal.5b02418

    Article  CAS  Google Scholar 

  20. Liu C, Liu H, Wang B, Hong J, Zhao F, Sun F, Jin S, Liu C, Zhang Y, Li J (2019) Plasma assisted preparation of CoPt/SiO2 Fischer-Tropsch catalysts: a comparison of the precursor pre-thermal treated temperatures. Energy Technol 7(2):224–232. https://doi.org/10.1002/ente.201800669

    Article  CAS  Google Scholar 

  21. Jermwongratanachai T, Jacobs G, Ma W, Shafer WD, Gnanamani MK, Gao P, Kitiyanan B, Davis BH, Klettlinger JLS, Yen CH, Cronauer DC, Kropf AJ, Marshall CL (2013) Fischer-Tropsch synthesis: comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic structure, catalytic activity, and oxidation–reduction (OR) cycles. Appl Catal A Gen 464–465:165–180. https://doi.org/10.1016/j.apcata.2013.05.040

    Article  CAS  Google Scholar 

  22. Sápi A, Rajkumar T, Ábel M, Efremova A, Grósz A, Gyuris A, Ábrahámné KB, Szenti I, Kiss J, Varga T, Kukovecz Á, Kónya Z (2019) Noble-metal-free and Pt nanoparticles-loaded, mesoporous oxides as efficient catalysts for CO2 hydrogenation and dry reforming with methane. J CO2 Util 32:106–118. https://doi.org/10.1016/j.jcou.2019.04.004

    Article  CAS  Google Scholar 

  23. Hong J, Du J, Wang B, Zhang Y, Liu C, Xiong H, Sun F, Chen S, Li J (2018) Plasma-assisted preparation of highly dispersed cobalt catalysts for enhanced Fischer-Tropsch synthesis performance. ACS Catal 8(7):6177–6185. https://doi.org/10.1021/acscatal.8b00960

    Article  CAS  Google Scholar 

  24. Wang S, Yin Q, Guo J, Ru B, Zhu L (2013) Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts. Fuel 108:597–603. https://doi.org/10.1016/j.fuel.2013.02.021

    Article  CAS  Google Scholar 

  25. Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Fischer-Tropsch synthesis: temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl Catal A Gen 333(2):177–191. https://doi.org/10.1016/j.apcata.2007.07.027

    Article  CAS  Google Scholar 

  26. Cook KM, Poudyal S, Miller JT, Bartholomew CH, Hecker WC (2012) Reducibility of alumina-supported cobalt Fischer-Tropsch catalysts: effects of noble metal type, distribution, retention, chemical state, bonding, and influence on cobalt crystallite size. Appl Catal A Gen 449:69–80. https://doi.org/10.1016/j.apcata.2012.09.032

    Article  CAS  Google Scholar 

  27. Parnian MJ, Taheri Najafabadi A, Mortazavi Y, Khodadadi AA, Nazzari I (2014) Ru promoted cobalt catalyst on γ-Al2O3: influence of different catalyst preparation method and Ru loadings on Fischer-Tropsch reaction and kinetics. Appl Surf Sci 313:183–195. https://doi.org/10.1016/j.apsusc.2014.05.183

    Article  CAS  Google Scholar 

  28. Ma W, Jacobs G, Keogh RA, Bukur DB, Davis BH (2012) Fischer-Tropsch synthesis: effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25%Co/Al2O3 catalyst. Appl Catal A Gen 437–438:1–9. https://doi.org/10.1016/j.apcata.2012.05.037

    Article  CAS  Google Scholar 

  29. Shariati J, Haghtalab A, Mosayebi A (2019) Fischer-Tropsch synthesis using Co and Co-Ru bifunctional nanocatalyst supported on carbon nanotube prepared via chemical reduction method. J Energy Chem 28:9–22. https://doi.org/10.1016/j.jechem.2017.10.001

    Article  Google Scholar 

  30. Xu R, Hou C, Xia G, Sun X, Li M, Nie H, Li D (2019) Effects of Ag promotion for Co/Al2O3 catalyst in Fischer-Tropsch synthesis. Catal Today. https://doi.org/10.1016/j.cattod.2019.04.004

    Article  Google Scholar 

  31. Dehvari M, Saravani H, Akbarzadeh-T N, Yazdan-Abad MZ (2019) A simple and clean method for the synthesis of Pd/G catalyst for ethanol oxidation. Int J Hydrogen Energy 44(13):6544–6550. https://doi.org/10.1016/j.ijhydene.2019.01.159

    Article  CAS  Google Scholar 

  32. Puzan AN, Baumer VN, Mateychenko PV (2017) Structure and decomposition of the silver formate Ag(HCO2). J Solid State Chem 246:264–268. https://doi.org/10.1016/j.jssc.2016.11.022

    Article  CAS  Google Scholar 

  33. Khimchenko YI, Vasilenko VP, Radkevich LS, Myalkovskii VV, Chubar TV, Chegoryan VM (1977) Decomposition of iron, cobalt, nickel, and copper formates. Soviet Powder Metall Met Ceram 16(5):327–332. https://doi.org/10.1007/BF00791078

    Article  Google Scholar 

  34. Qusti A, Samarkandy AA, Al-Thabaiti SA, Diefallah E-HM (1997) The kinetics of thermal decomposition of nickel formate dihydrate in air. J King Saud Univ Sci 9:73–81. https://doi.org/10.4197/Sci.9-1.7

    Article  Google Scholar 

  35. Won HI, Nersisyan H, Won CW, Lee J-M, Hwang J-S (2010) Preparation of porous silver particles using ammonium formate and its formation mechanism. Chem Eng J 156(2):459–464. https://doi.org/10.1016/j.cej.2009.10.053

    Article  CAS  Google Scholar 

  36. Rosen Y, Marrach R, Gutkin V, Magdassi S (2019) Thin copper flakes for conductive inks prepared by decomposition of copper formate and ultrafine wet milling. Adv Mater Technol 4(1):1800426. https://doi.org/10.1002/admt.201800426

    Article  CAS  Google Scholar 

  37. Rosenband V, Gany A (2004) Preparation of nickel and copper submicrometer particles by pyrolysis of their formates. J Mater Process Technol 153–154:1058–1061. https://doi.org/10.1016/j.jmatprotec.2004.04.165

    Article  CAS  Google Scholar 

  38. Harmel J, Peres L, Estrader M, Berliet A, Maury S, Fécant A, Chaudret B, Serp P, Soulantica K (2018) hcp-Co nanowires grown on metallic foams as catalysts for Fischer-Tropsch synthesis. Angew Chem Int Ed 57(33):10579–10583. https://doi.org/10.1002/anie.201804932

    Article  CAS  Google Scholar 

  39. Gao S, Hong J, Xiao G, Chen S, Zhang Y, Li J (2019) Evolution of cobalt species in glow discharge plasma prepared CoRu/SiO2 catalysts with enhanced Fischer-Tropsch synthesis performance. J Catal 374:246–256. https://doi.org/10.1016/j.jcat.2019.04.039

    Article  CAS  Google Scholar 

  40. Gavrilović L, Brandin J, Holmen A, Venvik HJ, Myrstad R, Blekkan EA (2018) Fischer-Tropsch synthesis—investigation of the deactivation of a Co catalyst by exposure to aerosol particles of potassium salt. Appl Catal B Environ 230:203–209. https://doi.org/10.1016/j.apcatb.2018.02.048

    Article  CAS  Google Scholar 

  41. Bae J-S, Hong SY, Park JC, Rhim GB, Youn MH, Jeong H, Kang SW, Yang J-I, Jung H, Chun DH (2019) Eco-friendly prepared iron-ore-based catalysts for Fischer-Tropsch synthesis. Appl Catal B Environ 244:576–582. https://doi.org/10.1016/j.apcatb.2018.11.082

    Article  CAS  Google Scholar 

  42. Khodakov AY (2009) Fischer-Tropsch synthesis: relations between structure of cobalt catalysts and their catalytic performance. Catal Today 144(3):251–257. https://doi.org/10.1016/j.cattod.2008.10.036

    Article  CAS  Google Scholar 

  43. Shi L, Tao K, Kawabata T, Shimamura T, Zhang XJ, Tsubaki N (2011) Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Co/SiO2 catalysts for Fischer-Tropsch Synthesis. ACS Catal 1(10):1225–1233. https://doi.org/10.1021/cs200294d

    Article  CAS  Google Scholar 

  44. Shi L, Jin Y, Xing C, Zeng C, Kawabata T, Imai K, Matsuda K, Tan Y, Tsubaki N (2012) Studies on surface impregnation combustion method to prepare supported Co/SiO2 catalysts and its application for Fischer-Tropsch synthesis. Appl Catal A Gen 435–436:217–224. https://doi.org/10.1016/j.apcata.2012.06.007

    Article  CAS  Google Scholar 

  45. Shi L, Zeng C, Lin Q, Lu P, Niu W, Tsubaki N (2014) Citric acid assisted one-step synthesis of highly dispersed metallic Co/SiO2 without further reduction: as-prepared Co/SiO2 catalysts for Fischer-Tropsch synthesis. Catal Today 228:206–211. https://doi.org/10.1016/j.cattod.2013.10.013

    Article  CAS  Google Scholar 

  46. Pengnarapat S, Ai P, Reubroycharoen P, Vitidsant T, Yoneyama Y, Tsubaki N (2018) Active Fischer-Tropsch synthesis Fe-Cu-K/SiO2 catalysts prepared by autocombustion method without a reduction step. J Energy Chem 27(2):432–438. https://doi.org/10.1016/j.jechem.2017.11.029

    Article  Google Scholar 

  47. Xiong H, Moyo M, Rayner MK, Jewell LL, Billing DG, Coville NJ (2010) Autoreduction and catalytic performance of a cobalt Fischer-Tropsch synthesis catalyst supported on nitrogen-doped carbon spheres. ChemCatChem 2(5):514–518. https://doi.org/10.1002/cctc.200900309

    Article  CAS  Google Scholar 

  48. Yang Y, Jia L, Hou B, Li D, Wang J, Sun Y (2014) The effect of nitrogen on the autoreduction of cobalt nanoparticles supported on nitrogen-doped ordered mesoporous carbon for the Fischer-Tropsch synthesis. ChemCatChem 6(1):319–327. https://doi.org/10.1002/cctc.201300897

    Article  CAS  Google Scholar 

  49. Park H, Kim KY, Youn DH, Choi YH, Kim WY, Lee JS (2017) Auto-reduction behavior of cobalt on graphitic carbon nitride coated alumina supports for Fischer-Tropsch synthesis. ChemCatChem 9(21):4098–4104. https://doi.org/10.1002/cctc.201700613

    Article  CAS  Google Scholar 

  50. Lü J, Huang C, Bai S, Jiang Y, Li Z (2012) Thermal decomposition and cobalt species transformation of carbon nanotubes supported cobalt catalyst for Fischer-Tropsch synthesis. J Nat Gas Chem 21(1):37–42. https://doi.org/10.1016/S1003-9953(11)60330-7

    Article  CAS  Google Scholar 

  51. Ni Z, Zhang X, Bai J, Wang Z, Li X, Zhang Y (2020) Potassium promoted core–shell-structured FeK@SiO2-GC catalysts used for Fischer-Tropsch synthesis to olefins without further reduction. New J Chem 44(1):87–94. https://doi.org/10.1039/C9NJ03947C

    Article  CAS  Google Scholar 

  52. Dalai AK, Davis BH (2008) Fischer-Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Appl Catal A Gen 348(1):1–15. https://doi.org/10.1016/j.apcata.2008.06.021

    Article  CAS  Google Scholar 

  53. Arsalanfar M, Fatemi M, Mirzaei N, Abdouss M, Rezazadeh E (2020) Study of mechanism and kinetic modeling of CO hydrogenation reaction over the impregnated Co-Ni/Al2O3 catalyst. J Chin Chem Soc 67(7):1152–1166. https://doi.org/10.1002/jccs.201900526

    Article  CAS  Google Scholar 

  54. Escalante M, Maury P, Bruinink CM, van der Werf K, Olsen JD, Timney JA, Huskens J, Neil Hunter C, Subramaniam V, Otto C (2007) Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces. Nanotechnology 19(2):025101. https://doi.org/10.1088/0957-4484/19/02/025101

    Article  CAS  PubMed  Google Scholar 

  55. Taherzadeh Lari T, Mirzaei AA, Atashi H (2017) Effects of Co/Ce molar ratio and operating temperature on nanocatalyst performance in the Fischer-Tropsch synthesis. RSC Adv 7(55):34497–34507. https://doi.org/10.1039/C7RA05490D

    Article  CAS  Google Scholar 

  56. Haghtalab A, Shariati J, Mosayebi A (2019) Experimental and kinetic modeling of Fischer-Tropsch synthesis over nano structure catalyst of Co–Ru/carbon nanotube. Reac Kinet Mech Cat 126(2):1003–1026. https://doi.org/10.1007/s11144-019-01535-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate University of Sistan and Baluchestan for helping and supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Eshraghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshraghi, A., Mirzaei, A.A., Rahimi, R. et al. A simple and low cost method for the synthesis of metallic cobalt nanoparticles without further reduction as an effective catalyst for Fischer–Tropsch Synthesis. Reac Kinet Mech Cat 134, 127–141 (2021). https://doi.org/10.1007/s11144-021-02046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02046-0

Keywords

Navigation