Skip to main content
Log in

Experimental and kinetic modeling of Fischer–Tropsch synthesis over nano structure catalyst of Co–Ru/carbon nanotube

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, the nanostructure catalyst of Co–Ru/CNTs is prepared by chemical reduction technique. Then, a set of catalytic experiments are designed and conducted for the Fischer–Tropsch synthesis (FTS) using the synthesized catalyst in a fixed bed reactor. The physical and chemical properties of the support and the synthesized catalyst were determined using the BET, XRD, H2–TPR, TEM, and H2-chemisorption characterization techniques. Based on the alkyl mechanism and using the Langmuir–Hinshelwood–Hougen–Watson (LHHW) isotherm, a kinetic model is developed for FTS. In most of the previous kinetic models, the primary reactions have merely been used, but in the current derivation of the developed kinetic model, the secondary reactions (adsorption, hydrogenation and chain-growth) and re-adsorption of primary olefins at the secondary active sites are considered. The present comprehensive kinetic model is applied for the product distribution such that the rate equations parameters are acquired via optimization. To estimate the kinetic model parameters, FTS was accomplished via a series of tests under the operating conditions as pressure (P): 10–20 bar, temperature (T): 483–513 K, gas hourly space velocity (GHSV): 1400–2400 h−1 and the H2/CO ratio of 1–2. The rationality and significance of the suggested model were checked through the statistical and correlation tests. The obtained results indicated that the outcomes of the current kinetic model were in good agreement with the experimental data. Using the present kinetic model, the average absolute deviations (AAD%) for the prediction of methane, ethylene and heavier hydrocarbons (C5+) formation rates are obtained as 7.06%, 11.57% and 14.74%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FTS:

Fischer–Tropsch synthesis

LHHW:

Langmuir–Hinshelwood–Hougen–Watson

CNTs:

Carbon nanotubes

ASF:

Anderson–Schulz–Flor

F-B:

Fixed-bed reactor

TPR:

Temperature-programmed reduction

XRD:

X-ray diffractometer

TEM:

Transmission electron microscopy

RDS:

Rate-determining step

FWHM:

Full width half maximum

R:

Universal gas constant (8.314 × 10−5 bar m3/mol K)

x:

Position within the catalyst bed

T:

Reaction temperature (K)

t:

Time consuming for Fischer–Tropsch reaction (s)

Mw,j :

Molecular weight of component j

P:

Productivity (kg) (mass of produced hydrocarbon in liquid phase product)

F:

Molar flow of product in gas phase (mol/s)

rj :

Formation rate of component j (mol/kg s)

yj :

Molar fraction of component j in gas phase

wj :

Weight fraction of component j in the liquid phase

W:

The catalyst weight (kg)

FCO,in :

Molar flow of carbon monoxide in the reactor inlet (mol/s)

FCO,out :

Molar flow of carbon monoxide in the reactor outlet (mol/s)

B:

FWHM of the Co3O4 at diffraction peak of 2θ = 36.8

MC,out :

Mass of output carbon

MC,in :

Mass of input carbon

NC :

Total number of the species

Fj :

Mole flow rates of jth component (mol/s)

Ri :

Rate of ith reaction (mol/kg s)

NR :

Number of total considered reactions

XCO :

CO conversion (%)

PT :

Total pressure in the reactor (bar)

Pj :

Partial pressure of j component (bar)

O:

Objective function of FTS reaction

K1 :

Equilibrium constant for the H2 adsorption on the primary active site

E:

Reaction activation energy (kJ/mol)

k3 :

Rate constant of chain growth in FTS mechanism for primary active site (mol/kg s)

k3,0 :

Pre-exponential factor of chain growth in FTS mechanism for primary active site (mol/kg s)

k5 :

Rate constant of the formation of methane (mol/kg s)

k5,0 :

Pre-exponential factor of the formation of methane (mol/kg s)

k4 :

Rate constant of the formation of paraffins on primary active site (mol/kg s)

k4,0 :

Pre-exponential factor of the formation of paraffins on primary active site (mol/kg s)

k6 :

Rate constant of the formation of olefins (mol/kg s)

k6,0 :

Pre-exponential factor of the formation of olefins (mol/kg s)

K7 :

Equilibrium constant for the CO adsorption on the secondary active site

k10 :

Rate constant for the forward reaction of olefin re-adsorption (mol/kg s bar)

k10,0 :

Pre-exponential factor for the forward reaction of olefin re-adsorption (mol/kg s bar)

k−10 :

Rate constant for the reverse reaction of olefin re-adsorption (mol/kg s)

k−10,0 :

Pre-exponential factor for the reverse reaction of olefin re-adsorption (mol/kg s)

k11 :

Rate constant of chain growth in FTS mechanism for secondary active site (mol/kg s)

k11,0 :

Pre-exponential factor of chain growth in FTS mechanism for secondary active site (mol/kg s)

k12 :

Rate constant of the formation of paraffins on secondary active site (mol/kg s bar)

k12,0 :

Pre-exponential factor of the formation of paraffins on secondary active site (mol/kg s bar)

ψ:

Primary active site on catalyst surface

θ:

Secondary active site on catalyst surface

σji :

Stoichiometric coefficient of jth component in ith reaction

αn :

Chain growth factor of FTS reaction for carbon number (n > 1)

References

  1. Pardo-Tarifa F, Cabrera S, Sanchez-Dominguez M, Boutonnet M (2017) Int J Hydrogen Energy 42:9754–9765

    Article  CAS  Google Scholar 

  2. Mohr SH, Wang J, Ellem G, Ward J, Giurco D (2015) Fuel 141:120–135

    Article  CAS  Google Scholar 

  3. Abas N, Kalair A, Khan N (2015) Futures 69:31–49

    Article  Google Scholar 

  4. Liu Y, Li Zh, Zhang Y (2016) Reac Kinet Mech Cat 119:457–468

    Article  CAS  Google Scholar 

  5. Bukur DB, Todic B, Elbashir NO (2016) Catal Today 275:66–75

    Article  CAS  Google Scholar 

  6. Dry ME (1982) J Mol Catal 17:133–144

    Article  CAS  Google Scholar 

  7. Mosayebi A, Haghtalab A (2015) Chem Eng J 259:191–204

    Article  CAS  Google Scholar 

  8. Farzad S, Haghtalab A, Rashidi A (2013) J Energy Chem 22:573–581

    Article  CAS  Google Scholar 

  9. Trepanier M, Dorval Dion CA, Dalai AK (2011) Can J Chem Eng 89:1441–1450

    Article  CAS  Google Scholar 

  10. Sari A, Zamani Y, Taheri SA (2009) Fuel Process Technol 90:1305–1313

    Article  CAS  Google Scholar 

  11. Todic B, Bhatelia T, Froment GF, Ma W, Jacobs G, Davis BH, Bukur DB (2013) Ind Eng Chem Res 52:669–679

    Article  CAS  Google Scholar 

  12. Shiva M, Atashi H, Tabrizi F, Mirzaei AA, Zare A (2013) Fuel Process Technol 106:631–640

    Article  CAS  Google Scholar 

  13. Elbashir NO, Roberts CB (2004) Prepr-Am Chem Soc Div Pet Chem 49:57–160

    Google Scholar 

  14. Mogalicherla AK, Elbashir NO (2011) Energy Fuels 25:878–889

    Article  CAS  Google Scholar 

  15. Haghtalab A, Nabipour M, Farzad S (2011) Fuel Process Technol 34:546–553

    Google Scholar 

  16. Fabiano A, Fernandes N (2005) Chem Eng Technol 28:1–9

    Google Scholar 

  17. Nabipoor M, Haghtalab A (2013) Chem Eng Commun 200:1170–1186

    Article  CAS  Google Scholar 

  18. Zhang X, Liu Y, Liu G, Tao K, Jin Q, Meng F, Wang D, Tsubaki N (2012) Fuel 92:122–129

    Article  CAS  Google Scholar 

  19. Qian W, Zhang H, Ying W, Fang D (2013) Chem Eng J 228:526–534

    Article  CAS  Google Scholar 

  20. Vaniice AM, Bell AT (1981) J Catal 70:418–432

    Article  Google Scholar 

  21. Vander laan GP, Beenackers ACM (1999) Ind Eng Chem 38:1277–1290

    Article  CAS  Google Scholar 

  22. Visconti CG, Tronconi E, Lietti L, Zennaro R, Forzatti P (2007) Chem Eng Sci 62:5338–5343

    Article  CAS  Google Scholar 

  23. Shariati J, RamazaniSaadatabadi A, Khorasheh F (2012) J Macromol Sci A 49:749–757

    Article  CAS  Google Scholar 

  24. Tavasoli A, Karimi S, Taghavi S, Zolfaghari Z, Amirfirouzkouhi H (2012) J Energy Chem 21:605–613

    CAS  Google Scholar 

  25. Karimi S, Tavasoli A, Mortazavi Y, Karimi A (2015) Appl Catal A Gen 499:188–196

    Article  CAS  Google Scholar 

  26. Irandoust A, Haghtalab A (2017) Catal Lett 147:2967–2981

    Article  CAS  Google Scholar 

  27. Irankhah A, Haghtalab A (2008) Chem Eng Technol 31:525–536

    Article  CAS  Google Scholar 

  28. Shariati J, Haghtalab A, Mosayebi A (2019) J Energy Chem 28:9–22

    Article  Google Scholar 

  29. Da Silva JF, Braganca LFFPG, Pais da Silva MI (2018) Reac Kinet Mech Cat 124:563–574

    Article  CAS  Google Scholar 

  30. Trépanier M, Tavasoli A, Dalai AK, Abatzoglou N (2009) Appl Catal A Gen 353:193–202

    Article  CAS  Google Scholar 

  31. Tavasoli A, Sadagiani K, Khorashe F, Seifkordi AA, Rohani AA, Nakhaeipour A (2008) Fuel Process Technol 89:491–498

    Article  CAS  Google Scholar 

  32. Xie Z, Frank B, Huang X, Schlögl R, Trunschke A (2016) Catal Lett 146:2417–2424

    Article  CAS  Google Scholar 

  33. Phaahlamohlaka TN, Kumi DO, Dlamini MW, Forbes R, Jewell LL, Billing DG, Coville NJ (2017) ACS Catal 7:1568–1578

    Article  CAS  Google Scholar 

  34. Teng BT, Chang J, Zhang CH, Cao DB, Yang J, Liu Y, Guo XH, Xiang HW, Li YW (2006) Appl Catal A 301:39–50

    Article  CAS  Google Scholar 

  35. Lente G (2015) Deterministic kinetics in chemistry and systems biology. Springer, New York

    Book  Google Scholar 

  36. Mosayebi A, Abedini R (2017) Int J Hydrogen Energy 42:27013–27023

    Article  CAS  Google Scholar 

  37. Chang J, Bai L, Teng B, Li Y (2007) Chem Eng Sci 62:4983–4991

    Article  CAS  Google Scholar 

  38. Todic B, Ma W, Jacobs G, Davis BH, Bukur DB (2014) Catal Today 228:32–39

    Article  CAS  Google Scholar 

  39. NakhaeiPour A, Housaindokht MR (2013) J Nat Gas Sci Eng 14:204–210

    Article  CAS  Google Scholar 

  40. Rao PVR, Shafer WD, Jacobs G, Martinelli M, Sparks DE, Davis BH (2017) RSC Adv 7:7793–7800

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haghtalab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghtalab, A., Shariati, J. & Mosayebi, A. Experimental and kinetic modeling of Fischer–Tropsch synthesis over nano structure catalyst of Co–Ru/carbon nanotube. Reac Kinet Mech Cat 126, 1003–1026 (2019). https://doi.org/10.1007/s11144-019-01535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01535-7

Keywords

Navigation