Skip to main content
Log in

Photocatalytic performance of bipyramidal anatase TiO2 toward the degradation organic dyes and its catalyst poisoning effect

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

It has been reported that bipyramidal anatase TiO2 with {101}-exposed facets (AT170) results in outstanding photocatalytic performance. However, its activity decayed significantly and comparatively lower than that of commercial P25 after 20 min. Further studies and calculations showed that the methylene blue (MB) degradation rate constants for AT170 were time dependent and decrease of k values with time. Besides, the results of XPS, EA and TEM could clearly elucidate that the active sites of catalysts were blocked by the carbon buildup and covered on the surface creating the metal–carbon bonding on the catalysts. These observation strongly implied the existence of the poisoning effect of AT170 during photocatalytic processes. Also, the surface area values of P25 and AT170 were found to be 46.83 and 3.56 m2/g respectively. It was suggested that the catalyst poisoning effect could be prevented or controlled by increasing the surface area of the catalyst. Besides of surface area, zeta potential was also found to be served as the important factor determining the photocatalytic performance toward organic dyes due to the attraction/repulsion of electrostatic interaction. The zeta potential values of P25 and AT170 were found to be − 3.8 and − 32.9 mV respectively, which can adsorb cationic MB dyes on the negative charged surface through attraction of electrostatic interaction successively enhancing the degradation performance. It strongly indicates that both surface area and zeta potential play vital roles in photocatalytic degradation toward organic dyes and affect the rate constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hachem C, Bocquillon F, Zahraa O, Bouchy M (2001) Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigm 49(2):117–125

    Article  CAS  Google Scholar 

  2. Chequer FMD, de Oliveira GAR, Ferraz ERA, Cardoso JC, Zanoni MVB, de Oliveira DP (2013) Textile dyes: dyeing process and environmental impact. In: Gunay M (ed) Eco-friendly textile dyeing and finishing. InTech, Rijeka

    Google Scholar 

  3. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat I, Marchant R, Smyth W (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56(1–2):81–87

    Article  CAS  PubMed  Google Scholar 

  4. Carmen Z, Daniela S (2012) Textile organic dyes—characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview. In: Mostragt-Szlichtyng A, Puzyn T (eds) Organic pollutants ten years after the Stockholm convention-environmental and analytical update. InTech, Rijeka

    Google Scholar 

  5. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340

    Article  CAS  PubMed  Google Scholar 

  6. Kadirova ZC, Katsumata K-I, Isobe T, Matsushita N, Nakajima A, Okada K (2013) Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution. Appl Surf Sci 284:72–79

    Article  CAS  Google Scholar 

  7. Liu M, Qiu X, Miyauchi M, Hashimoto K (2013) Energy-level matching of Fe (III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J Am Chem Soc 135(27):10064–10072

    Article  CAS  PubMed  Google Scholar 

  8. Xia S, Zhang L, Pan G, Qian P, Ni Z (2015) Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways. Phys Chem Chem Phys 17(7):5345–5351

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Shu T, Su L, Zhang X, Serpe MJ (2018) Synthesis of poly (N-isopropylacrylamide)-co-(acrylic acid) microgel-entrapped CdS quantum dots and their photocatalytic degradation of an organic dye. RSC Adv 8(30):16850–16857

    Article  CAS  Google Scholar 

  10. Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135(27):9995–9998

    Article  CAS  PubMed  Google Scholar 

  11. Moustakas N, Katsaros F, Kontos A, Romanos GE, Dionysiou D, Falaras P (2014) Visible light active TiO2 photocatalytic filtration membranes with improved permeability and low energy consumption. Catal Today 224:56–69

    Article  CAS  Google Scholar 

  12. Lyu H, Hisatomi T, Goto Y, Yoshida M, Higashi T, Katayama M, Takata T, Minegishi T, Nishiyama H, Yamada T (2019) An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem Sci 10(11):3196–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He X, Zhang C (2019) Recent advances in structure design for enhancing photocatalysis. J Mater Sci 54(12):8831–8851. https://doi.org/10.1007/s10853-019-03417-8

    Article  CAS  Google Scholar 

  14. Yang MH, Tsai MC, Chang YW, Chang YC, Chiu HT, Lee CY (2013) Photodegradation by a heterogeneous mixture of micro-sized anatase and truncated rhomboid anatase hollow spheres. ChemCatChem 5(7):1871–1876

    Article  CAS  Google Scholar 

  15. Armaković S, Armaković S, Finčur N, Šibul F, Vione D, Šetrajčić J, Abramović B (2015) Influence of electron acceptors on the kinetics of metoprolol photocatalytic degradation in TiO2 suspension. A combined experimental and theoretical study. RSC Adv 5(67):54589–54604

    Article  CAS  Google Scholar 

  16. An M, Li L, Cao Y, Ma F, Liu D, Gu F (2019) Coral reef-like Pt/TiO2-ZrO2 porous composites for enhanced photocatalytic hydrogen production performance. Mol Catal 475:110482

    Article  CAS  Google Scholar 

  17. Khan MM, Ansari SA, Pradhan D, Ansari MO, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2(3):637–644

    Article  CAS  Google Scholar 

  18. Chen W-F, Koshy P, Sorrell CC (2016) Effects of film topology and contamination as a function of thickness on the photo-induced hydrophilicity of transparent TiO2 thin films deposited on glass substrates by spin coating. J Mater Sci 51(5):2465–2480

    Article  CAS  Google Scholar 

  19. Jiang Y, Chen W-F, Koshy P, Sorrell CC (2019) Enhanced photocatalytic performance of nanostructured TiO2 thin films through combined effects of polymer conjugation and Mo-doping. J Mater Sci 54(7):5266–5279. https://doi.org/10.1007/s10853-018-03271-0

    Article  CAS  Google Scholar 

  20. Yang M-H, Chen P-C, Tsai M-C, Chen T-T, Chang I-C, Chiu H-T, Lee C-Y (2013) Alkali metal ion assisted synthesis of faceted anatase TiO2. CrystEngComm 15(15):2966–2971

    Article  CAS  Google Scholar 

  21. Lee J-Y, Tsai M-C, Chen P-C, Chen T-T, Chan K-L, Lee C-Y, Lee R-K (2015) Thickness effects on light absorption and scattering for nanoparticles in the shape of hollow spheres. J Phys Chem C 119(46):25754–25760

    Article  CAS  Google Scholar 

  22. Li J, Yu Y, Chen Q, Li J, Xu D (2010) Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors. Cryst Growth Des 10(5):2111–2115

    Article  CAS  Google Scholar 

  23. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B 39(1):75–90

    Article  CAS  Google Scholar 

  24. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31(2):145–157

    Article  CAS  Google Scholar 

  25. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  26. Zhou N, Polavarapu L, Gao N, Pan Y, Yuan P, Wang Q, Xu Q-H (2013) TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 5(10):4236–4241

    Article  CAS  PubMed  Google Scholar 

  27. Liu M, Piao L, Lu W, Ju S, Zhao L, Zhou C, Li H, Wang W (2010) Flower-like TiO2 nanostructures with exposed 001 facets: facile synthesis and enhanced photocatalysis. Nanoscale 2(7):1115–1117

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed M, El-Katori EE, Gharni ZH (2013) Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J Alloys Compd 553:19–29

    Article  CAS  Google Scholar 

  29. Rauf MA, Meetani MA, Khaleel A, Ahmed A (2010) Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157(2–3):373–378

    Article  CAS  Google Scholar 

  30. Matos J, García A, Zhao L, Titirici MM (2010) Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. Appl Catal A 390(1–2):175–182

    Article  CAS  Google Scholar 

  31. Liu GG, Han K, Zhou YH, Ye HQ, Zhang X, Hu JB, Li XJ (2018) Facile synthesis of highly dispersed Ag doped graphene oxide/titanate nanotubes as a visible light photocatalytic membrane for water treatment. ACS Sustain Chem Eng 6(5):6256–6263. https://doi.org/10.1021/acssuschemeng.8b00029

    Article  CAS  Google Scholar 

  32. Shanmugam M, Alsalme A, Alghamdi A, Jayavel R (2015) Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. ACS Appl Mater Interfaces 7(27):14905–14911

    Article  CAS  PubMed  Google Scholar 

  33. Zhu M, Zhai C, Qiu L, Lu C, Paton AS, Du Y, Goh MC (2015) New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation. ACS Sustain Chem Eng 3(12):3123–3129

    Article  CAS  Google Scholar 

  34. Pitre SP, McTiernan CD, Ismaili H, Scaiano JC (2014) Metal-free photocatalytic radical trifluoromethylation utilizing methylene blue and visible light irradiation. ACS Catal 4(8):2530–2535

    Article  CAS  Google Scholar 

  35. Xu C, Rangaiah G, Zhao X (2014) Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study. Ind Eng Chem Res 53(38):14641–14649

    Article  CAS  Google Scholar 

  36. Oudar J (1980) Sulfur adsorption and poisoning of metallic catalysts. Catal Rev: Sci Eng 22(2):171–195

    Article  CAS  Google Scholar 

  37. Rosso I, Garrone E, Geobaldo F, Onida B, Saracco G, Specchia V (2001) Sulphur poisoning of LaMn1−xMgxO3 catalysts for natural gas combustion. Appl Catal B 30(1):61–73

    Article  CAS  Google Scholar 

  38. Choi Y, Umebayashi T, Yoshikawa M (2004) Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J Mater Sci 39(5):1837–1839

    Article  CAS  Google Scholar 

  39. Göpel W, Anderson J, Frankel D, Jaehnig M, Phillips K, Schäfer J, Rocker G (1984) Surface defects of TiO2 (110): a combined XPS XAES and ELS study. Surf Sci 139(2–3):333–346

    Article  Google Scholar 

  40. Wiedmer D, Sagstuen E, Welch K, Haugen HJ, Tiainen H (2016) Oxidative power of aqueous non-irradiated TiO2-H2O2 suspensions: methylene blue degradation and the role of reactive oxygen species. Appl Catal B 198:9–15

    Article  CAS  Google Scholar 

  41. Hossan MS, Ochiai B (2018) Preparation of TiO2-poly (3-chloro-2-hydroxypropyl methacrylate) nanocomposite for selective adsorption and degradation of dyes. Technologies 6(4):92

    Article  Google Scholar 

  42. Azeez F, Al-Hetlani E, Arafa M, Abdelmonem Y, Nazeer AA, Amin MO, Madkour M (2018) The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep 8(1):7104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mozia S, Tomaszewska M, Morawski AW (2005) Photocatalytic degradation of azo-dye Acid Red 18. Desalination 185(1–3):449–456

    Article  CAS  Google Scholar 

  44. Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6(1):27

    PubMed  Google Scholar 

  45. Lim TH, Jeong SM, Kim SD, Gyenis J (2000) Photocatalytic decomposition of NO by TiO2 particles. J Photochem Photobiol A 134(3):209–217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ministry of Science and Technology of Taiwan (ROC), for financially supporting this research under Contract No. MOST 105-2119-M-007-021. K. T. Li Foundation for Development of Science and Technology is appreciated for the editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Young Lee.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, KL., Lin, WH., Chen, FJ. et al. Photocatalytic performance of bipyramidal anatase TiO2 toward the degradation organic dyes and its catalyst poisoning effect. Reac Kinet Mech Cat 130, 531–546 (2020). https://doi.org/10.1007/s11144-020-01759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01759-y

Keywords

Navigation