Skip to main content
Log in

Effects of film topology and contamination as a function of thickness on the photo-induced hydrophilicity of transparent TiO2 thin films deposited on glass substrates by spin coating

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transparent TiO2 films (~50–540 nm thick) were spin-coated in multiple cycles by sol–gel on soda-lime-silica glass and annealed at 450 °C for 2 h. Analyses included mineralogy (XRD), optics (UV–Vis), chemistry (XPS), microstructure and topography (SEM, AFM), and hydrophilicity (sessile drop). The microstructures were discontinuous (1 cycle), continuous (4–11 cycles), and damaged (13–15 cycles), with the highest quality films being those fabricated using 7–11 cycles. The thickest films were damaged as a result of shrinkage during annealing, which may have occurred from a two-stage process of dehydroxylation followed by pyrolysis. The single-crystal grain sizes were ~27 nm for the films and the roughness increased with increasing thickness. The hydrophilicity showed clear correlations with the roughness and surprisingly, not with the Ti3+, –OH, and Na+ contents. The role of the glass also was critical to the absorption/transmission of radiation as well as the wetting. That is, the discontinuous and damaged films showed high wetting angles and the continuous films showed low wetting angles. Correlation was observed between the amounts of different contaminants from glass and the free energies of formation for TiO2 to Ti2O3 under the influence of these contaminants. This relation was attributed to the driving force for oxide bond formation, where the only slightly negative free energy of reaction with Na+ allowed its relatively free diffusion through the microstructure until it achieved saturation solubility, although all of the main glass components effectively achieved saturation solubility under the modest kinetics of equilibration that were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu Q, Wu X, Wang B, Liu Q (2002) Preparation and super-hydrophilic properties of TiO2/SnO2 composite thin films. Mater Res Bull 37:2255–2262

    Article  Google Scholar 

  2. Muggli DS, McCue JT, Falconer JL (1998) Mechanism of the photocatalytic oxidation of ethanol on TiO2. J Catal 173:470–483

    Article  Google Scholar 

  3. Stafford U, Gray KA, Kamat PV (1997) Photocatalytic degradation of 4-chlorophenol: the effects of varying TiO2 concentration and light wavelength. J Catal 167:25–32

    Article  Google Scholar 

  4. Wang R, Hashimoto K, Fujishima A, Cjikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432

    Article  Google Scholar 

  5. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kitamura A, Shimohigoshi M, Watanabe T (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10:135–138

    Article  Google Scholar 

  6. Yu J, Zhao X (2001) Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol–gel derived TiO2 thin films. Mater Res Bull 36:97–107

    Article  Google Scholar 

  7. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    Article  Google Scholar 

  8. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. doi:10.1007/s10853-010-5113-0

    Article  Google Scholar 

  9. Nakajima A, Koizumi S, Watanabe T, Hashimoto K (2000) Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films. Langmuir 16:7048–7050

    Article  Google Scholar 

  10. Miyauchi M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Photoinduced surface reactions on TiO2 and SrTiO3 films: photocatalytic oxidation and photoinduced hydrophilicity. Chem Mater 12:3–5

    Article  Google Scholar 

  11. Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K (1998) Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces. Langmuir 14:5918–5920

    Article  Google Scholar 

  12. Järn M, Xu Q, Lindén M (2010) Wetting studies of hydrophilic–hydrophobic TiO2@SiO2 nanopatterns prepared by photocatalytic decomposition. Langmuir 26:11330–11336

    Article  Google Scholar 

  13. Irie H, Washizuka S, Watanabe Y, Kako T, Hashimoto K (2005) Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO2 films. J Electrochem Soc 152:351–356

    Article  Google Scholar 

  14. Law WS, Lam SW, Gan WY, Scott J, Amal R (2009) Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films. Thin Solid Films 517:5425–5430

    Article  Google Scholar 

  15. Wang W, Zhang DW, Tao CX, Wang Q, Wang WN, Huang YS, Ni ZJ, Zhuang SL, Li HX, Mei T (2012) Superhydrophilic and wetting behavior of TiO2 films and their surface morphologies. Chin Phys Lett 29(8):088103

    Article  Google Scholar 

  16. Xu Y, Xu W, Huang F (2012) Surface and interface analysis of fibers sputtered with titanium dioxide. J Eng Fibers Fabr 7:7–12

    Google Scholar 

  17. Xu XH, Zhang ZZ, Liu W (2009) Fabrication of superhydrophobic surfaces with perfluorooctanoic acid modified TiO2/polystyrene nanocomposites coating. Colloids Surf A 341:21–26

    Article  Google Scholar 

  18. Hao YQ, Wang YF, Weng YX (2008) Particle-size-dependent hydrophilicity of TiO2 nanoparticles characterized by marcus reorganization energy of interfacial charge recombination. J Phys Chem C 112:8995–9000

    Article  Google Scholar 

  19. Alzamania M, Shokuhfara A, Eghdama E, Mastalib S (2013) Sol–gel fabrication and enhanced optical properties, photocatalysis, and surface wettability of nanostructured titanium dioxide films. Mater Sci Semicond Process 16:1063–1069

    Article  Google Scholar 

  20. Miyauchi M (2008) Visible light induced super-hydrophilicity on single crystalline TiO2 nanoparticles and WO3 layered thin films. J Mater Chem 18:1858–1864

    Article  Google Scholar 

  21. Lazzeri M, Vittadini A, Sellonil A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63:155409

    Article  Google Scholar 

  22. Tada H, Tanaka M (1997) Dependence of TiO2 photocatalytic activity upon its film thickness. Langmuir 13:360–364

    Article  Google Scholar 

  23. Sun RD, Nakajima A, Fujishima A, Watanabe T, Hashimoto K (2001) Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J Phys Chem B 105:1984–1990

    Article  Google Scholar 

  24. Watanabe T, Fukayama S, Miyauchi M, Fujishima A, Hashimoto K (2000) Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol–gel process on a soda-lime glass. J Sol–Gel Sci Technol 19:71–76

    Article  Google Scholar 

  25. Irie H, Washizuka S, Yoshino N, Hashimoto K (2003) Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. Chem Commun 11:1298–1299

    Article  Google Scholar 

  26. Shirolkar M, Abyaneh MK, Singh A, Tomer A, Choudhary R, Sathe V, Phase D, Kulkarni S (2008) Rapidly switched wettability of titania films deposited by dc magnetron sputtering. J Phys D 41:155308

    Article  Google Scholar 

  27. Klug HP, Alexander LE (1997) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  28. Lin MZ, Chen H, Chen WF, Nakaruk A, Koshy P, Sorrell CC (2014) Effect of single-cation doping and codoping with Mn and Fe on the photocatalytic performance of TiO2 thin films. Int J Hydrog Energy 39:21500–21511

    Article  Google Scholar 

  29. Nakaruk A, Lin CYW, Koshy P, Sorrell CC (2012) Iron doped titania thin films prepared by spin coating. Adv Appl Ceram 111:129–133

    Article  Google Scholar 

  30. Lin CP, Chen H, Nakaruk A, Koshy P, Sorrell CC (2013) Effect of annealing temperature on the photocatalytic activity of TiO2 thin films. Energy Procedia 34:627–636

    Article  Google Scholar 

  31. Yakuphanoglu F, Sekerci M, Balaban A (2005) The effect of film thickness on the optical absorption edge and optical constants of the Cr(III) organic thin films. Opt Mater 27:1369–1372

    Article  Google Scholar 

  32. Santara B, Giri PK, Imakita K, Fujii M (2013) Evidence for Ti interstitial induced extended visible absorption and near infrared photoluminescence from undoped TiO2 nanoribbons: an in situ photoluminescence study. J Phys Chem C 117:23402–23411

    Article  Google Scholar 

  33. Zhao BX, Zhou JC, Rong LY (2010) Microstructure and optical properties of TiO2 thin films deposited at different oxygen flow rates. Trans Nonferrous Met Soc China 20:1429–1433

    Article  Google Scholar 

  34. Li GH, Yang L, Jin YX, Zhang LD (2000) Structural and optical properties of TiO2 thin film and TiO2 + 2 wt% ZnFe2O4 composite film prepared by r.f. sputtering. Thin Solid Films 368:163–167

    Article  Google Scholar 

  35. Swanepoel R (1984) Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J Phys E 17:896–903

    Article  Google Scholar 

  36. Lin CYW, Channei D, Koshy P, Nakaruk A, Sorrell CC (2012) Effect of Fe doping on TiO2 films prepared by spin coating. Ceram Int 38:3943–3946

    Article  Google Scholar 

  37. Nakaruk A, Lin CYW, Channei D, Koshy P, Sorrell CC (2012) Fe-doped and Mn-doped titanium dioxide thin films. J Sol–Gel Sci Technol 61:175–178

    Article  Google Scholar 

  38. Lin CYW, Channei D, Koshy P, Nakaruk A, Sorrell CC (2012) Multivalent Mn-doped TiO2 thin films. Phys E 44:1969–1972

    Article  Google Scholar 

  39. Nakaruk A, Chen H, Waibel A, Koshy P, Sorrell CC (2012) Surface modification of titanium dioxide thin film via manganese doping. e-J Surf Sci Nanotechnol 10:103–106

    Article  Google Scholar 

  40. Ghazzal MN, Chaoui N, Genet M, Gaigneaux EM, Robert D (2011) Effect of compressive stress inducing a band gap narrowing on the photoinduced activities of sol–gel TiO2 films. Thin Solid Films 520:1147–1154

    Article  Google Scholar 

  41. Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  42. Ghrairi N, Bouaicha M (2012) Structural, morphological, and optical properties of TiO2 thin films synthesised by the electrophoretic deposition technique. Nanoscale Res Lett 7:357

    Article  Google Scholar 

  43. Ayieko CO, Musembi RJ, Waita SM, Aduda BO, Jain PK (2012) Structural and optical characterization of nitrogen-doped TiO2 thin films deposited by spray pyrolysis on fluorine doped tin oxide (FTO) coated glass slides. Int J Energy Eng 2:67–72

    Article  Google Scholar 

  44. Al-Haddad A, Wang Z, Xu R, Qi H, Vellacheri R, Kaiser U, Lei Y (2015) Dimensional dependence of the optical absorption band edge of TiO2 nanotube arrays beyond the quantum effect. J Phys Chem C 119:16331–16337

    Article  Google Scholar 

  45. Yaghoubi H, Taghavinia N, Alamdar EK, Volinsky AA (2010) Nanomechanical properties of TiO2 granular thin films. ACS Appl Mater Interfaces 2:2629–2636

    Article  Google Scholar 

  46. Simonsen ME, Li Z, Søgaard EG (2009) Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film. Appl Surf Sci 255:8054–8062

    Article  Google Scholar 

  47. Simonsen ME, Jensen H, Li Z, Søgaard EG (2008) Surface properties and photocatalytic activity of nanocrystalline titania films. J Photochem Photobiol A 200:192–200

    Article  Google Scholar 

  48. Cheng C, Amini A, Zhu C, Xu Z, Song H, Wang N (2014) Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci Rep 4:4181

    Google Scholar 

  49. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Article  Google Scholar 

  50. Shen P, Fujii H, Nogi K (2006) Wettability of polycrystalline rutile TiO2 by molten Al in different atmospheres. Acta Mater 54:1559–1569

    Article  Google Scholar 

  51. Chimupala Y, Hyett G, Simpson R, Mitchell R, Douthwaite R, Milnea SJ, Brydson RD (2014) Synthesis and characterization of mixed phase anatase TiO2 and sodium-doped TiO2(B) thin films by low pressure chemical vapour deposition (LPCVD). RSC Adv 4:48507–48515

    Article  Google Scholar 

  52. Aubry E, Lambert J, Demange V, Billard A (2012) Effect of Na diffusion from glass substrate on the microstructural and photocatalytic properties of post-annealed TiO2 films synthesised by reactive sputtering. Surf Coat Technol 206:4999–5005

    Article  Google Scholar 

  53. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Cryst B25:925–946

    Article  Google Scholar 

  54. Hume-Rothery W, Smallman RE, Haworth CW (1969) Structure of metals and alloys. Belgrave Square Publication, London

    Google Scholar 

  55. Morgan BJ, Watson GW (2010) GGA+ U description of lithium intercalation into anatase TiO2. Phys Rev B 82:144119

    Article  Google Scholar 

  56. Paz Y, Heller A (1995) Photooxidative self-cleaning transparent titanium dioxide film on soda lime glass: the deleterious effect of sodium contamination and its prevention. J Mater Res 12:2759–2766

    Article  Google Scholar 

  57. Al-Omari SJ, Bumajdad A, Al-Sagheer FA, Zaki MI (2012) Surface and related bulk properties of titania nanoparticles recovered from aramid-titania hybrid films: a novel attempt. Mater Res Bull 47:3308–3316

    Article  Google Scholar 

  58. Wagemaker M, Krol RV, Kentgens APM, Well AAV, Mulder FM (2001) Two phase morphology limits lithium diffusion in TiO2 (anatase). J Am Chem Soc 123:11454–11461

    Article  Google Scholar 

  59. Atashbar MZ, Sun HT, Gong B, Wlodarski W, Lamb R (1998) XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol–gel method. Thin Solid Films 326:238–244

    Article  Google Scholar 

  60. Dreher AW, Bille JF, Weinreb RN (1989) Active optical depth resolution improvement of the laser tomographic scanner. Appl Opt 28:804–808

    Article  Google Scholar 

  61. Ashkarran AA, Mohammadizadeh MR (2007) The effect of heat treatment on superhydrophilicity of TiO2 nano thin films. Eur Phys J Appl Phys 40:155–162

    Article  Google Scholar 

  62. Wei CH, Chang CM (2011) Polycrystalline TiO2 thin films with different thicknesses deposited on unheated substrates using rf magnetron sputtering. Mater Trans 52:554–559

    Article  Google Scholar 

  63. Sahdan MZ, Nayan N, Dahlan SH, Mahmoud ME, Hashim U (2012) Sol–gel synthesis of TiO2 thin films from in-house nano-TiO2 powder. Adv Mater Phys Chem 20:16–20

    Article  Google Scholar 

  64. Yildirim G, Bal S, Gulen M, Varilci A, Budak E, Akdogan M (2012) Substrate effect on microstructure and optical performance of sputter-deposited TiO2 thin films. Cryst Res Technol 47:195–201

    Article  Google Scholar 

  65. Borras A, Elipe ARG (2010) Wetting properties of polycrystalline TiO2 surfaces: a scaling approach to the roughness factors. Langmuir 26:15875–15882

    Article  Google Scholar 

  66. Lee HY, Park YH, Ko KH (2000) Correlation between surface morphology and hydrophilic/hydrophobic conversion of MOCVD-TiO2 films. Langmuir 16:7289–7293

    Article  Google Scholar 

  67. Shibata T, Irie H, Tryk DA, Hashimoto K (2009) Effect of residual stress on the photochemical properties of TiO2 thin films. J Phys Chem C 113:12811–12817

    Article  Google Scholar 

  68. Exarhos GJ, Hess NJ (1992) Spectroscopic measurements of stress relaxation during thermally induced crystallization of amorphous titania films. Thin Solid Films 220:254–260

    Article  Google Scholar 

  69. Xu CY, Zhang PX, Yan L (2001) Blue shift of Raman peak from coated TiO2 nanoparticles. J Raman Spect 32:862–865

    Article  Google Scholar 

  70. Morrell R (1989) Handbook of properties of technical & engineering ceramics, part 1: an introduction for the engineer and designer. HMSO Publications, London

    Google Scholar 

  71. Varshneya AK (1982) Stresses in glass-to-metal seals, in Glass III, treatise on materials science and technology, vol 22. Academic Press, New York, pp 241–306

    Book  Google Scholar 

  72. Kwong WL, Nakaruk A, Koshy P, Sorrell CC (2013) Tunable photoelectrochemical properties by nanostructural control in WO3 thin films prepared by carboxylic acid-assisted electrodeposition. J Phys Chem C 117:17766–17776

    Article  Google Scholar 

  73. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4:2695–2700

    Article  Google Scholar 

  74. FactSage 6.2 (2010) Thermfact and GTT-Technologies

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Australian Research Council (ARC), the Tuition Fee Scholarship from UNSW Australia, and the characterization facilities provided by the Australian Microscopy & Microanalysis Research Facilities (AMMRF) node at UNSW Australia, as well as the assistance by Dr. Yin Yao in undertaking some of the microstructural analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WF., Koshy, P. & Sorrell, C.C. Effects of film topology and contamination as a function of thickness on the photo-induced hydrophilicity of transparent TiO2 thin films deposited on glass substrates by spin coating. J Mater Sci 51, 2465–2480 (2016). https://doi.org/10.1007/s10853-015-9559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9559-y

Keywords

Navigation