Skip to main content
Log in

A novel fast evaluation method for mesoporous NiMo/Al2O3 hydrodemetallization (HDM) catalysts: activity and metal uptake capacity measurements

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this investigation, a test procedure is proposed to evaluate the activity and metal uptake capacity of hydrodemetallization (HDM) catalyst in a micro-reactor over a certain period of time instead of longtime normal pilot tests. Catalysts with different specifications were evaluated using this method. The initial activities and reaction rates, metal uptake capacity, deposition profile, distribution factor, effective diffusivity and deactivation rate of the catalysts were examined. Catalyst activity measurements estimated that the metal uptake capacity of catalyst B (as a well-structured HDM catalyst) to be 0.31 g/g in comparison to 0.09 g/g for catalyst A. These results could help distinguish the durable high performance hydrodemetallization catalysts by providing deeper insight into the structure and nature of contaminant metal species deposited on the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu T, Lu J, Zhao X et al (2015) Distribution of vanadium compounds in petroleum vacuum residuum and their transformations in hydrodemetallization. Energy Fuels 29:2089–2096. https://doi.org/10.1021/ef502352q

    Article  CAS  Google Scholar 

  2. Liu Y, Gao L, Wen L, Zong B (2009) Recent advances in heavy oil hydroprocessing technologies. Recent Pat Chem Eng 2:22–36

    Article  CAS  Google Scholar 

  3. Rana MS, Sámano V, Ancheyta J, Diaz JAI (2007) A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 86:1216–1231. https://doi.org/10.1016/j.fuel.2006.08.004

    Article  CAS  Google Scholar 

  4. Quann RJ, Ware RA, Hung C-W, Wei J (1988) Catalytic hydrodemetallation of petroleum. In: Wei J, Anderson JL, Bischoff KB, Seinfeld JH (eds) Advances in chemical engineering. Academic Press, Cambridge, pp 95–259

    Google Scholar 

  5. Leliveld RG, Eijsbouts SE (2008) How a 70-year-old catalytic refinery process is still ever dependent on innovation. Catal Today 130:183–189. https://doi.org/10.1016/j.cattod.2007.07.015

    Article  CAS  Google Scholar 

  6. Rodríguez E, Félix G, Ancheyta J, Trejo F (2018) Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons. Fuel 225:118–133. https://doi.org/10.1016/j.fuel.2018.02.085

    Article  CAS  Google Scholar 

  7. Reyes L, Zerpa C, Krasuk JH (1994) Catalyst deactivation in Hdm of heavy deasphalted oils. In: Delmon B, Froment GF (eds) Studies in Surface Science and Catalysis. Elsevier, Amsterdam, pp 85–95

    Google Scholar 

  8. Gualda G, Kasztelan S (1996) Initial deactivation of residue hydrodemetallization catalysts. J Catal 161:319–337. https://doi.org/10.1006/jcat.1996.0190

    Article  CAS  Google Scholar 

  9. Maity SK, Blanco E, Ancheyta J et al (2012) Early stage deactivation of heavy crude oil hydroprocessing catalysts. Fuel 100:17–23. https://doi.org/10.1016/j.fuel.2011.11.017

    Article  CAS  Google Scholar 

  10. Kim T, Al-Mutairi A, Marafi AMJ et al (2014) Hydrotreatment of two atmospheric residues from Kuwait export and lower fars crude oils. Fuel 117:191–197. https://doi.org/10.1016/j.fuel.2013.09.057

    Article  CAS  Google Scholar 

  11. Rana MS, Ancheyta J, Sahoo SK, Rayo P (2014) Carbon and metal deposition during the hydroprocessing of Maya crude oil. Catal Today 220–222:97–105. https://doi.org/10.1016/j.cattod.2013.09.030

    Article  CAS  Google Scholar 

  12. Liu T, Ju L, Zhou Y et al (2015) Effect of pore size distribution (PSD) of Ni-Mo/Al2O3 catalysts on the Saudi Arabia vacuum residuum hydrodemetallization (HDM). Catal Today 271:179–187. https://doi.org/10.1016/j.cattod.2015.07.045

    Article  CAS  Google Scholar 

  13. Guichard B, Gaulier F, Barbier J et al (2018) Asphaltenes diffusion/adsorption through catalyst alumina supports—Influence on catalytic activity. Catal Today 305:49–57. https://doi.org/10.1016/j.cattod.2017.10.016

    Article  CAS  Google Scholar 

  14. Dong Y, Xu Y, Zhang Y et al (2018) Synthesis of hierarchically structured alumina support with adjustable nanocrystalline aggregation towards efficient hydrodesulfurization. Appl Catal A 559:30–39. https://doi.org/10.1016/j.apcata.2018.04.007

    Article  CAS  Google Scholar 

  15. Dong Y, Chen Z, Xu Y et al (2017) Template-free synthesis of hierarchical meso-macroporous γ-Al2O3 support: Superior hydrodemetallization performance. Fuel Process Technol 168:65–73. https://doi.org/10.1016/j.fuproc.2017.08.034

    Article  CAS  Google Scholar 

  16. Semeykina VS, Polukhin AV, Lysikov AI et al (2019) Texture evolution of hard-templated hierarchically porous alumina catalyst in heavy oil hydroprocessing. Catal Lett 149:513–521. https://doi.org/10.1007/s10562-018-2646-3

    Article  CAS  Google Scholar 

  17. Semeykina VS, Malkovich EG, YaV B et al (2018) Optimal catalyst texture in macromolecule conversion: a computational and experimental study. Chem Eng Sci 188:1–10. https://doi.org/10.1016/j.ces.2018.05.005

    Article  CAS  Google Scholar 

  18. Arbabi S, Sahimi M (1991) Computer simulations of catalyst deactivation—II. The effect of morphological, transport and kinetic parameters on the performance of the catalyst. Chem Eng Sci 46:1749–1755. https://doi.org/10.1016/0009-2509(91)87021-4

    Article  CAS  Google Scholar 

  19. Elizalde I, Mederos FS, del Carmen Monterrubio Ma, et al (2019) Mathematical modeling and simulation of an industrial adiabatic trickle-bed reactor for upgrading heavy crude oil by hydrotreatment process. Reac Kinet Mech Cat 126:31–48. https://doi.org/10.1007/s11144-018-1489-7

    Article  CAS  Google Scholar 

  20. Janssens JP, Bezemer BJ, van Langeveld AD et al (1994) Catalyst Deactivation in hydrodemetallisation of model compound vanadyl-tetraphenylporphyrin. In: Delmon B, Froment GF (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 335–342

    Google Scholar 

  21. Oyekunle LO, Ikpekri OB (2004) Modeling of hydrodesulfurization catalysts. I. Influence of catalyst pore structures on the rate of demetallization. Ind Eng Chem Res 43:6647–6653. https://doi.org/10.1021/ie049618y

    Article  CAS  Google Scholar 

  22. Rajagopalan K, Luss D (1979) Influence of catalyst pore size on demetallation rate. Ind Eng Chem Proc Des Dev 18:459–465. https://doi.org/10.1021/i260071a019

    Article  CAS  Google Scholar 

  23. Rao SM, Coppens M-O (2012) Increasing robustness against deactivation of nanoporous catalysts by introducing an optimized hierarchical pore network—application to hydrodemetalation. Chem Eng Sci 83:66–76. https://doi.org/10.1016/j.ces.2011.11.044

    Article  CAS  Google Scholar 

  24. Shi Y, Ye G, Yang C et al (2019) Pore engineering of hierarchically structured hydrodemetallization catalyst pellets in a fixed bed reactor. Chem Eng Sci 202:336–346. https://doi.org/10.1016/j.ces.2019.03.049

    Article  CAS  Google Scholar 

  25. Shi Y, Yang C, Zhao X et al (2019) Engineering the hierarchical pore structures and geometries of hydrodemetallization catalyst pellets. Ind Eng Chem Res 58:9829–9837. https://doi.org/10.1021/acs.iecr.9b01174

    Article  CAS  Google Scholar 

  26. Furimsky E (1998) Selection of catalysts and reactors for hydroprocessing. Appl Catal A 171:177–206. https://doi.org/10.1016/S0926-860X(98)00086-6

    Article  CAS  Google Scholar 

  27. Tamm PW, Harnsberger HF, Bridge AG (1981) Effects of feed metals on catalyst aging in hydroprocessing residuum. Ind Eng Chem Proc Des Dev 20:262–273. https://doi.org/10.1021/i200013a014

    Article  CAS  Google Scholar 

  28. Toulhoat H, Plumail JC (1989) Upgrading heavy ends into marketable distillates: new concepts and new catalysts for two key stages, HDM and HDN. In: Trimm DL, Sama H, Bishara A (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 463–471

    Google Scholar 

  29. Hung C-W, Wei J (1980) The kinetics of porphyrin hydrodemetallation. 1. Nickel compounds. Ind Eng Chem Proc Des Dev 19:250–257. https://doi.org/10.1021/i260074a009

    Article  CAS  Google Scholar 

  30. Hung C-W, Wei J (1980) The kinetics of porphyrin hydrodemetallation. 2. Vanadyl compounds. Ind Eng Chem Proc Des Dev 19:257–263. https://doi.org/10.1021/i260074a010

    Article  CAS  Google Scholar 

  31. Agrawal R, Wei J (1984) Hydrodemetalation of nickel and vanadium porphyrins. 1. Intrinsic kinetics. Ind Eng Chem Proc Des Dev 23:505–514. https://doi.org/10.1021/i200026a017

    Article  CAS  Google Scholar 

  32. Agrawal R, Wei J (1984) Hydrodemetalation of nickel and vanadium porphyrins. 2. Intraparticle diffusion. Ind Eng Chem Proc Des Dev 23:515–522. https://doi.org/10.1021/i200026a018

    Article  CAS  Google Scholar 

  33. Rankel LA (1981) Reactions of metalloporphyrins and petroporphyrins with H/sub 2/S and H/sub 2/. Am Chem Soc Div Pet Chem Prepr

  34. Herbert J, Santes V, Cortez MT et al (2005) Catalytic hydrotreating of heavy gasoil FCC feed over a NiMo/γ-Al2O3-TiO2 catalyst: effect of hydrogen sulfide on the activity. Catal Today 107–108:559–563. https://doi.org/10.1016/j.cattod.2005.07.105

    Article  CAS  Google Scholar 

  35. Rana MS, Ancheyta J, Rayo P, Maity SK (2007) Heavy oil hydroprocessing over supported NiMo sulfided catalyst: an inhibition effect by added H2S. Fuel 86:1263–1269. https://doi.org/10.1016/j.fuel.2006.08.002

    Article  CAS  Google Scholar 

  36. Bonne RLC, van Steenderen P, Moulijn JA (1995) Hydrodemetalization kinetics of nickel tetraphenylporphyrin over Mo/Al2O3 catalysts. Ind Eng Chem Res 34:3801–3807. https://doi.org/10.1021/ie00038a017

    Article  CAS  Google Scholar 

  37. Bonné RLC, van Steenderen P, Moulijn JA (2001) Hydrogenation of nickel and vanadyl tetraphenylporphyrin in absence of a catalyst: a kinetic study. Appl Catal A 206:171–181. https://doi.org/10.1016/S0926-860X(00)00587-1

    Article  Google Scholar 

  38. Smith BJ, Wei J (1991) Deactivation in catalytic hydrodemetallation I. Model compound kinetic studies. J Catal 132:1–20. https://doi.org/10.1016/0021-9517(91)90243-W

    Article  CAS  Google Scholar 

  39. Wei J (1962) Intraparticle diffusion effects in complex systems of first order reactions: II. The influence of diffusion on the performance of chemical reactors. J Catal 1:538–546. https://doi.org/10.1016/0021-9517(62)90126-4

    Article  CAS  Google Scholar 

  40. Long FX, Gevert BS (2001) Kinetics of vanadyl etioporphyrin hydrodemetallization. J Catal 200:91–98. https://doi.org/10.1006/jcat.2001.3183

    Article  CAS  Google Scholar 

  41. Kohli K, Prajapati R, Maity SK et al (2019) Deactivation of a hydrotreating catalyst during hydroprocessing of synthetic crude by metal bearing compounds. Fuel 243:579–589. https://doi.org/10.1016/j.fuel.2019.01.153

    Article  CAS  Google Scholar 

  42. Dufresne P, Brahma N (1995) Off-site regeneration of hydroprocessing catalysts. Bull Soc Chim Belges 104:339–346. https://doi.org/10.1002/bscb.19951040424

    Article  CAS  Google Scholar 

  43. Rana MS, Ancheyta J, Maity SK, Rayo P (2008) Heavy crude oil hydroprocessing: a zeolite-based CoMo catalyst and its spent catalyst characterization. Catal Today 130:411–420. https://doi.org/10.1016/j.cattod.2007.10.106

    Article  CAS  Google Scholar 

  44. Gaetan M, Jamal C, Francis L (2009) Trickle-bed laboratory reactors for kinetic studies. Int J Chem React Eng. https://doi.org/10.2202/1542-6580.1730

    Article  Google Scholar 

  45. Tosun I (2007) 7—unsteady-state macroscopic balances. In: Tosun I (ed) Modeling in transport phenomena, 2nd edn. Elsevier, Amsterdam, pp 161–211

    Chapter  Google Scholar 

  46. Harris S, Chianelli RR (1984) Catalysis by transition metal sulfides: the relation between calculated electronic trends and HDS activity. J Catal 86:400–412. https://doi.org/10.1016/0021-9517(84)90385-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aligoli Niaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghassabzadeh, H., Rashidzadeh, M. & Niaei, A. A novel fast evaluation method for mesoporous NiMo/Al2O3 hydrodemetallization (HDM) catalysts: activity and metal uptake capacity measurements. Reac Kinet Mech Cat 130, 381–402 (2020). https://doi.org/10.1007/s11144-020-01752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01752-5

Keywords

Navigation