Skip to main content
Log in

Texture Evolution of Hard-Templated Hierarchically Porous Alumina Catalyst in Heavy Oil Hydroprocessing

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The study is devoted to the deactivation behavior of alumina “guard-type” mesoporous and hierarchical catalysts in long-term 800 h hydroprocessing of heavy oil under conditions close to industrial ones. The purely mesoporous sample had only 10–15 nm mesopores by Hg porosimetry whereas the hierarchical catalyst possessed a bimodal pore size distribution with maximum at 15 nm (55 vol%) and 40 nm (45 vol%, related to the mouths of 200 nm spherical macropores). Both catalysts had similar activities for the first 200 h of hydroprocessing. The mesoporous catalyst underwent the rapid deactivation in hydrodesulfurization (HDS) and hydrodemetallization (HDM) of V after 200 h on stream, and the remarkable decrease in hydrodeaspaltenization (HDAs) and Ni removal after 300–400 h on stream due to the intensive mesopore plugging by 55% of the total volume. The hierarchical catalyst did not show any decline in HDS and HDAs during the 800 h experiment, though its HDM activity also reduced due to the surface poisoning and coke deposition, albeit to a lesser extent. The intrinsic mesopores of the hierarchical alumina were shown to narrow down to 10 nm but did not experience substantial blocking observed for the mesoporous catalyst. Hierarchical texture seems not only to provide wide macro- and mesopores less prone to plugging by coke species, but to ensure effective transport of reaction products out of the small pores which prevents them from blockage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Organization of the Petroleum Exporting Countries (2017) Annual statistical bulletin. Organization of the Petroleum Exporting Countries, Vienna

    Google Scholar 

  2. Ancheyta J, Alvarez-Majmutov A, Leyva C (2016) Hydrotreating of oil fractions. Multiphase catalytic reactors. Wiley, New York. pp 295–329

    Book  Google Scholar 

  3. Castañeda LC, Muñoz JD, Ancheyta J (2014) Current situation of emerging technologies for upgrading of heavy oils. Catal Today 220–222:248–273. https://doi.org/10.1016/j.cattod.2013.05.016

    Article  CAS  Google Scholar 

  4. Ancheyta J, Speight JG (2007) Hydroprocessing of heavy oils and residua. CRC Press, Boca Raton

    Book  Google Scholar 

  5. Ancheyta J (2016) Deactivation of hydroprocessing catalysts. Deactivation of heavy oil hydroprocessing catalysts: fundamentals and modeling. Wiley, New York. pp 89–126

    Book  Google Scholar 

  6. Baltus RE, Anderson JL (1983) Hindered diffusion of asphaltenes through microporous membranes. Chem Eng Sci 38:1959–1969

    Article  CAS  Google Scholar 

  7. Chiang C-L, Tiou H-H (1992) Optimal design for the residual oil hydrodemetallation in a fixed bed reactor. Chem Eng Comm 117:383–399

    Article  CAS  Google Scholar 

  8. Ruckenstein E, Tsai HC (1981) Optimum pore size for the catalytic conversion of large molecules. AIChE J 27:697–699

    Article  CAS  Google Scholar 

  9. Shimura M, Shiroto Y, Takeuchi C (1986) Effect of Catalyst pore structure on hydrotreating of heavy oil. Ind Eng Chem Fundam 25:330–337. https://doi.org/10.1021/i100023a005

    Article  CAS  Google Scholar 

  10. Leyva C, Ancheyta J, Mariey L et al (2014) Characterization study of NiMo/SiO2-Al2O3 spent hydroprocessing catalysts for heavy oils. Catal Today 220–222:89–96. https://doi.org/10.1016/j.cattod.2013.10.007

    Article  CAS  Google Scholar 

  11. Liu ZY, Chen SL, Dong P, Ge XJ (2012) Diffusion of heavy oil in SiO2 model catalyst and FCC catalyst. Adv Mater Res 550–553:158–163. https://doi.org/10.4028/www.scientific.net/AMR.550-553.158

    Article  CAS  Google Scholar 

  12. Guichard B, Gaulier F, Barbier J et al (2018) Asphaltenes diffusion/adsorption through catalyst alumina supports—influence on catalytic activity. Catal Today 305:49–57. https://doi.org/10.1016/j.cattod.2017.10.016

    Article  CAS  Google Scholar 

  13. Rao SM, Coppens MO (2012) Increasing robustness against deactivation of nanoporous catalysts by introducing an optimized hierarchical pore network-application to hydrodemetalation. Chem Eng Sci 83:66–76

    Article  CAS  Google Scholar 

  14. Dong Y, Xu Y, Zhang Y et al (2018) Synthesis of hierarchically structured alumina support with adjustable nanocrystalline aggregation towards efficient hydrodesulfurization. Appl Catal A Gen 559:30–39. https://doi.org/10.1016/j.apcata.2018.04.007

    Article  CAS  Google Scholar 

  15. Dong Y, Chen Z, Xu Y et al (2017) Template-free synthesis of hierarchical meso-macroporous Γ-Al2O3 support: superior hydrodemetallization performance. Fuel Process Technol 168:65–73. https://doi.org/10.1016/j.fuproc.2017.08.034

    Article  CAS  Google Scholar 

  16. Absi-Halabi M, Stanislaus A, Al-Mughni T et al (1995) Hydroprocessing of vacuum residues: relation between catalyst activity, deactivation and pore size distribution. Fuel 74:1211–1215. https://doi.org/10.1016/0016-2361(94)00042-P

    Article  CAS  Google Scholar 

  17. Sane RC, Tsotsis TT, Webster IA, Ravi-Kumar VS (1992) Studies of asphaltene diffusion and structure and their implications for resid upgrading. Chem Eng Sci 47:2683–2688

    Article  CAS  Google Scholar 

  18. Wang WP, Guin JA (1991) A comparison of unimodal and bimodal catalyst deactivation behavior in a model compound system with rapid coke deposition. Fuel Process Technol 28:149–166. https://doi.org/10.1016/0378-3820(91)90046-F

    Article  CAS  Google Scholar 

  19. Khaleel A, Al-Mansouri S (2010) Meso-macroporous γ-alumina by template-free sol-gel synthesis: The effect of the solvent and acid catalyst on the microstructure and textural properties. Colloids Surfaces A Physicochem Eng Asp 369:272–280. https://doi.org/10.1016/j.colsurfa.2010.08.040

    Article  CAS  Google Scholar 

  20. Yabuki M, Takahashi R, Sato S et al (2002) Silica–alumina catalysts prepared in sol–gel process of TEOS with organic additives. Phys Chem Chem Phys 4:4830–4837. https://doi.org/10.1039/b205645c

    Article  CAS  Google Scholar 

  21. Stanislaus A, Al-Dolama K, Absi-Halabi M (2002) Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism. J Mol Catal A Chem 181:33–39. https://doi.org/10.1016/S1381-1169(01)00353-3

    Article  CAS  Google Scholar 

  22. Li Y, Peng C, Li L, Rao P (2014) Self-assembled 3D hierarchically structured gamma alumina by hydrothermal method. J Am Ceram Soc 97:35–39. https://doi.org/10.1111/jace.12652

    Article  CAS  Google Scholar 

  23. Dong Y, Yu X, Zhou Y et al (2018) Towards active macro-mesoporous hydrotreating catalysts: synthesis and assembly of mesoporous alumina microspheres. Catal Sci Technol 8:1892–1904. https://doi.org/10.1039/c7cy02621h

    Article  CAS  Google Scholar 

  24. Dupin T, Lavina J, Poisson R (1993) Process for the preparation of alumina agglomerates. United States patent US

  25. Mendoza-Nieto JA, Vera-Vallejo O, Escobar-Alarcón L et al (2013) Development of new trimetallic NiMoW catalysts supported on SBA-15 for deep hydrodesulfurization. Fuel 110:268–277. https://doi.org/10.1016/j.fuel.2012.07.057

    Article  CAS  Google Scholar 

  26. Boahene PE, Soni KK, Dalai AK, Adjaye J (2011) Application of different pore diameter SBA-15 supports for heavy gas oil hydrotreatment using FeW catalyst. Appl Catal A Gen 402:31–40. https://doi.org/10.1016/j.apcata.2011.05.005

    Article  CAS  Google Scholar 

  27. Ruud Snel (1988) Control of the porous structure of amorphous silica—alumina: V. The effect of compaction. Appl Catal 36:249–258

    Article  Google Scholar 

  28. Trimm DL, Stanislaus A (1986) The control of pore size in alumina catalyst supports: a review. Appl Catal 21:215–238. https://doi.org/10.1016/S0166-9834(00)81356-1

    Article  CAS  Google Scholar 

  29. López-Salinas E, E JG, Hernández-Cortez JG et al (2005) Long-term evaluation of NiMo/alumina–carbon black composite catalysts in hydroconversion of Mexican 538 °C + vacuum residue. Catal Today 109:69–75

    Article  CAS  Google Scholar 

  30. Chen S-L, Dong P, Xu K et al (2007) Large pore heavy oil processing catalysts prepared using colloidal particles as templates. Catal Today 125:143–148

    Article  CAS  Google Scholar 

  31. Su B-L, Sanchez C, Yang X-Y (2012) Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley, New York

    Google Scholar 

  32. Li H, Sheng-Li C, Peng D (2009) Preparation, characterization and catalytic performance of novel macroporous catalysts for heavy oil hydrogenation. Ranliao Huaxue Xuebao 37:444–447

    CAS  Google Scholar 

  33. Zi L, Sheng C, Peng D (2012) Novel macroporous residua FCC catalysts. Fuel Chem Technol 40

  34. Nguyen-Huy C, Shin EW (2016) Hierarchical macro-mesoporous Al2O3-supported NiK catalyst for steam catalytic cracking of vacuum residue. Fuel 169:1–6. https://doi.org/10.1016/j.fuel.2015.11.088

    Article  CAS  Google Scholar 

  35. Liu Z, Dong P (2012) Preparation of macroporous catalysts and their performance in catalytic cracking of heavy oil. J Fuel Chem Technol 40:1092–1097

    CAS  Google Scholar 

  36. Han D, Li X, Zhang L et al (2012) Hierarchically ordered meso/macroporous γ-alumina for enhanced hydrodesulfurization performance. Microporous Mesoporous Mater 158:1–6. https://doi.org/10.1016/j.micromeso.2012.03.022

    Article  CAS  Google Scholar 

  37. Semeykina VS, Malkovich EG, Bazaikin YV et al (2018) Optimal catalyst texture in macromolecule conversion: a computational and experimental study. Chem Eng Sci 188:1–10. https://doi.org/10.1016/j.ces.2018.05.005

    Article  CAS  Google Scholar 

  38. Larichev YV, Martyanov ON (2018) The dynamics of asphaltene aggregates in heavy crude oils on a nanometer scale studied via small-angle X-ray scattering in situ. J Pet Sci Eng 165:575–580

    Article  CAS  Google Scholar 

  39. Parkhomchuk EV, Semeykina VS, Sashkina KA et al (2016) Synthesis of polystyrene beads for hard-templating of three-dimensionally ordered macroporosity and hierarchical texture of adsorbents and catalysts. Top Catal. https://doi.org/10.1007/s11244-016-0719-3

    Article  Google Scholar 

  40. Semeykina V, Parkhomchuk E, Polukhin A et al (2015) CoMoNi catalyst texture and surface properties in heavy oil processing. Part I: hierarchical macro/mesoporous alumina support. Ind Eng Chem Res 55:3535–3545. https://doi.org/10.1021/acs.iecr.5b04730

    Article  CAS  Google Scholar 

  41. Yumoto M, Kukes SG, Klein MT, Gates BC (1996) Catalytic Hydroprocessing of Aromatic Compounds: Effects of Nickel and Vanadium Sulfide Deposits on Reactivities and Reaction Networks. Ind Eng Chem Res 35:3203–3209. https://doi.org/10.1021/ie960023f

    Article  CAS  Google Scholar 

  42. Hubaut R (2007) Vanadium-based sulfides as hydrotreating catalysts. Appl Catal A Gen 322:121–128. https://doi.org/10.1016/j.apcata.2007.01.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was carried out within the framework of the budget project АААА-А17-117041710077-4 for Boreskov Institute of Catalysis. The authors would like to thank S. V. Cherepanova, N. A. Rudina, T. Ya. Efimenko, V. A., L. N. Atamanova, N. N. Malyarchuk, Trunova, G. S. Lytvak for the characterization of the catalysts and Yu. V. Larichev, P. P. Dik, D. D. Uvarkina and D. O. Novikov for their help with the characterization of the feed and oil products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoriya S. Semeykina.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2092 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semeykina, V.S., Polukhin, A.V., Lysikov, A.I. et al. Texture Evolution of Hard-Templated Hierarchically Porous Alumina Catalyst in Heavy Oil Hydroprocessing. Catal Lett 149, 513–521 (2019). https://doi.org/10.1007/s10562-018-2646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2646-3

Keywords

Navigation