Skip to main content
Log in

Kinetic evidence for two different active sites on dry Amberlyst® 15 catalyst in the alkylation between 1-dodecene and p-xylene

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

On Amberlyst® 15 catalyst (dry) at 85 °C, 1-dodecene underwent concurrent double bond isomerization and alkylation with p-xylene. The alkylation reaction appeared to occur by an Eley–Rideal mechanism in which adsorbed olefin reacted with bulk phase p-xylene. Kinetic data showed that alkylation was irreversible and that the intermediate complex between olefin and p-xylene underwent isomerization in which the aromatic ring moved between adjacent carbons on the dodecyl chain. Given enough reaction time, the dodecyl p-xylene isomers always reached the same equilibrium distribution, regardless of catalyst loading. Kinetic modeling of concurrent olefin isomerization and alkylation showed that these two reactions must occur on two different catalytic sites. Alkylation was inhibited by the formation of dodecyl p-xylenes, while double bond isomerization was not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Scheme 4
Fig. 8

Similar content being viewed by others

References

  1. Fernandes RM, Lachter ER (2005) Catal Commun 6:550

    Article  CAS  Google Scholar 

  2. Buttersack C, Widdecke H, Klein J (1986) J Mol Catal 38:365

    Article  CAS  Google Scholar 

  3. Nel RJJ, de Klerk A (2007) Ind Eng Chem Res 46:2902

    Article  CAS  Google Scholar 

  4. Petre AL, Hoelderich WF, Gorbaty ML (2009) Appl Catal A 363:100

    Article  CAS  Google Scholar 

  5. Yadav GD, Siddiqui MINI (2009) Ind Eng Chem Res 48:10803

    Article  CAS  Google Scholar 

  6. Freire MA, Mendes DTSL, Freitas LS, Beerthuis R, Amarante SF, Ramos ALD (2017) Catal Today 289:192

    Article  CAS  Google Scholar 

  7. Yadav GD, Doshi NS (2002) Org Proc Res Dev 6:263

    Article  CAS  Google Scholar 

  8. Howe-Grant M (1992) Kirk-Othmer encyclopedia of chemical technology, vol 2, 4th edn. Wiley, New York, pp 100–106

    Google Scholar 

  9. Gee JC, Kattchee LM, Gee SJ (2014) J Phys Org Chem 27:583

    Article  CAS  Google Scholar 

  10. Olah GA (1971) Acc Chem Res 4:240

    Article  CAS  Google Scholar 

  11. Olah GA, Kobayashi S, Tashiro M (1972) J Am Chem Soc 94:7448

    Article  CAS  Google Scholar 

  12. Chiavarino B, Crestoni ME, Fornarini S, Lemaire J, Maitre P, MacAleese L (2006) J Am Chem Soc 128:12553

    Article  CAS  PubMed  Google Scholar 

  13. Lenoir D (2003) Angew Chem Int Ed 42:854

    Article  CAS  Google Scholar 

  14. Dange PN, Sharma A, Rathod VK (2014) Catal Lett 144:1537

    Article  CAS  Google Scholar 

  15. Lilja J, Aumo J, Salmi T, Murzin DY, Mäki-Arvela P, Sundell M, Ekman K, Peltonen R, Vainio H (2002) Appl Catal A 228:253

    Article  CAS  Google Scholar 

  16. Sert E, Atalay FS (2010) Prog Reac Kinetics Mech 35:219

    Article  CAS  Google Scholar 

  17. Gee JC, Fisher S (2015) J Catal 331:13

    Article  CAS  Google Scholar 

  18. Słomkiewicz PM (2004) Appl Catal A 269:33

    Article  CAS  Google Scholar 

  19. Bringué R, Ramírez E, Montserrat I, Javier T, Cunill F (2013) J Catal 304:7

    Article  CAS  Google Scholar 

  20. Gee JC, Williams ST (2013) J Catal 303:1

    Article  CAS  Google Scholar 

  21. Lente G (2018) Curr Opin Chem Eng 21:76

    Article  Google Scholar 

  22. Gee JC, Jeansonne MS, Yang H, Fisher S (2017) Reac Kinet Mech Cat 122:21

    Article  CAS  Google Scholar 

  23. Levenberg K (1944) Q Appl Math 2:164

    Article  Google Scholar 

  24. Marquardt DW (1963) SIAM J App Math 11:431

    Article  Google Scholar 

  25. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes in pascal. Cambridge University Press, Cambridge

    Google Scholar 

  26. Gee JC, Prampin DS (2009) Appl Catal A 360:71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rachel Franklin for providing proton NMR spectra, and we thank Chevron Phillips Chemical Company LP for permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Gee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gee, J.C., Stansifer, R.D. Kinetic evidence for two different active sites on dry Amberlyst® 15 catalyst in the alkylation between 1-dodecene and p-xylene. Reac Kinet Mech Cat 126, 879–901 (2019). https://doi.org/10.1007/s11144-019-01557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01557-1

Keywords

Navigation