Skip to main content
Log in

Reactions of 2-octanol on Amberlyst® 15: concurrent Eley–Rideal and Langmuir–Hinshelwood reactions on two different types of active sites

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

On Amberlyst® 15 (dry) at 75 °C, 2-octanol undergoes concurrent esterification and dehydration in the presence of heptanoic acid in the liquid phase. Kinetic data and 18O labelling studies show that the esterification reaction most likely occurs by an Eley–Rideal (ER) mechanism between adsorbed carboxylic acid and bulk phase alcohol, while the dehydration reaction occurs by a Langmuir–Hinshelwood (LH) mechanism requiring interaction of adsorbed alcohol with a vacant site. The two reactions occur on two different types of catalytic sites: while all the sites are sulfonic acid groups, kinetic data suggest that not all of the acidic sites are positioned appropriately to a neighboring site to assist with dehydration. A kinetic model fits the observed data for the simultaneous ER and LH reactions over at least 23 h of observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. Gee JC, Fisher S (2015) J Catal 313:13

    Article  Google Scholar 

  2. Gurav HR, Nandiwale KY, Bokade VV (2014) J Phys Org Chem 27:121

    Article  CAS  Google Scholar 

  3. Sharma M, Toor AP, Wanchoo RK (2014) Int J Chem React Eng 12:451

    Google Scholar 

  4. Sharma M, Wanchoo RK, Toor AP (2014) Ind Eng Chem Res 53:2167

    Article  CAS  Google Scholar 

  5. Liu Y, Wei M, Li X, Gao L, Mao L (2013) Asian J Chem 25:3979

    CAS  Google Scholar 

  6. Leyva F, Orjuela A, Miller DJ, Gil I, Vargas J, Rodríguez G (2013) Ind Eng Chem Res 52:18153

    Article  CAS  Google Scholar 

  7. Pappu VKS, Kanyi V, Santhanakrishnan A, Kira CT, Miller DJ (2013) Bioresour Technol 130:793

    Article  CAS  Google Scholar 

  8. Cheng Y, Feng Y, Ren Y, Liu X, Gao A, He B, Yan F, Li J (2012) Bioresour Technol 113:65

    Article  CAS  Google Scholar 

  9. Akbay EÖ, Altiokka MR (2011) Appl Catal A 396:14

    Article  CAS  Google Scholar 

  10. Ju IB, Lim H-W, Jeon W, Suh DJ, Park M-J, Suh Y-W (2011) Chem Eng J 168:293

    Article  CAS  Google Scholar 

  11. Sert E, Atalay FS (2011) Prog React Kinet Mech 36:239

    Article  CAS  Google Scholar 

  12. Miao S, Shanks BH (2011) J Catal 279:136

    Article  CAS  Google Scholar 

  13. Ali SH (2009) Int J Chem Kinet 41:432

    Article  CAS  Google Scholar 

  14. López DE, Suwannakarn K, Goodwin JG, Bruce DA (2008) Ind Eng Chem Res 47:2221

    Article  Google Scholar 

  15. Suwannakarn K, Lotero E, Goodwin JG (2007) Ind Eng Chem Res 46:7050

    Article  CAS  Google Scholar 

  16. Huang Y-S, Sundmacher K (2007) Int J Chem Kinet 39:245

    Article  CAS  Google Scholar 

  17. Liu Y, Lotero E, Goodwin JG (2006) J Catal 242:278

    Article  CAS  Google Scholar 

  18. Kirumakki SR, Nagaraju N, Chary KVR (2006) Appl Catal A 299:185

    Article  CAS  Google Scholar 

  19. Ali SH, Merchant SQ (2006) Int J Chem Kinet 38:593

    Article  CAS  Google Scholar 

  20. Grob S, Hasse H (2006) Ind Eng Chem Res 45:1869

    Article  CAS  Google Scholar 

  21. Teo HTR, Saha B (2004) J Catalysis 228:174

    Article  CAS  Google Scholar 

  22. Gangadwala G, Mankar S, Mahajani S, Kienle A, Stein E (2003) Ind Eng Chem Res 42:2146

    Article  CAS  Google Scholar 

  23. Altiokka MR, Çitak A (2003) Appl Catal A 239:141

    Article  CAS  Google Scholar 

  24. Kirumakki SR, Nagaraju N, Chary KVR, Narayanan S (2003) Appl Catal A 248:161

    Article  CAS  Google Scholar 

  25. Lee M-J, Chiu J-Y, Lin H (2002) Ind Eng Chem Res 41:2882

    Article  CAS  Google Scholar 

  26. Pöpken T, Götze L, Gmehling J (2000) Ind Eng Chem Res 39:2601

    Article  Google Scholar 

  27. Song W, Venimadhavan G, Manning JM, Malone MF, Doherty MF (1998) Ind Eng Chem Res 37:1917

    Article  CAS  Google Scholar 

  28. Mazzotti M, Neri B, Gelosa D, Kruglov A, Morbidelli M (1997) Ind Eng Chem Res 36:3

    Article  CAS  Google Scholar 

  29. Peterka VV (1974) Fette Seifen Anstrichm 76:397

    Article  CAS  Google Scholar 

  30. Setínek K, Beránek L (1970) J Catal 17:306

    Article  Google Scholar 

  31. Bertero NM, Trasarti AF, Apesteguía CR, Marchi AJ (2013) Appl Catal A 458:28

    Article  CAS  Google Scholar 

  32. Bertero NM, Apesteguía CR, Marchi AJ (2009) Catal Commun 10:1339

    Article  CAS  Google Scholar 

  33. Hoek I, Nijhuis TA, Stankiewicz AI, Moulijn JA (2004) Appl Catal A 266:109

    Article  CAS  Google Scholar 

  34. Fahim RB (1969) J Appl Chem 19:356

    Article  CAS  Google Scholar 

  35. De Boer JH, Rahim RB, Linsen BG, Visseren WJ, De Vleesschauwer WFNM (1967) J Catal 7:163

    Article  Google Scholar 

  36. Koster R, van der Linden B, Poels E, Bliek A (2001) J Catal 204:333

    Article  CAS  Google Scholar 

  37. Rettner CT (1994) J Chem Phys 101:1529

    Article  CAS  Google Scholar 

  38. Fischer E, Speier A (1895) Chem Ber 28:3252

    Article  CAS  Google Scholar 

  39. Roberts I, Urey HC (1938) J Am Chem Soc 60:2391

    Article  CAS  Google Scholar 

  40. D’Arcy RL, Watt IC (1970) Trans Faraday Soc 66:1236

    Article  Google Scholar 

  41. Toteja RSD, Jangida BL, Sundaresan M, Venkataranmani B (1997) Langmuir 13:2980

    Article  CAS  Google Scholar 

  42. Tesser R, Di Serio M, Casale L, Carotenuto G, Santacesaria E (2010) Can J Chem Eng 88:1044

    Article  CAS  Google Scholar 

  43. Pérez-Maciá MS, Curcó D, Bringué R, Iborra M, Rodriguez-Ropero F, van der Vegt NFA, Aleman C (2015) Soft Matter 11:9144

    Article  Google Scholar 

  44. Levenberg K (1944) Q Appl Math 2:164

    Article  Google Scholar 

  45. Marquardt DW (1963) SIAM J Appl Math 11:431

    Article  Google Scholar 

  46. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes in Pascal. Cambridge University Press, Cambridge

    Google Scholar 

  47. Matsuzaki K, Uryu T, Osada K, Kawamura T (1972) Macromolecules 5:816

    Article  CAS  Google Scholar 

  48. Feil F, Harder S (2003) Macromolecules 36:3446

    Article  Google Scholar 

  49. Pérez-Maciá MA, Curcó D, Bringué R, Iborra M, Alemán C (2015) Soft Matter 11:22

    Google Scholar 

Download references

Acknowledgements

We thank Chevron Phillips Chemical Company LP for permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Gee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gee, J.C., Jeansonne, M.S., Yang, H. et al. Reactions of 2-octanol on Amberlyst® 15: concurrent Eley–Rideal and Langmuir–Hinshelwood reactions on two different types of active sites. Reac Kinet Mech Cat 122, 21–41 (2017). https://doi.org/10.1007/s11144-017-1206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1206-y

Keywords

Navigation