Skip to main content
Log in

Thiophene oxidation with H2O2 over defect and perfect titanium silicalite-1: a computational study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The oxidation mechanisms of thiophene (Tp) with H2O2 over defect and perfect titanium silicalite-1 (TS-1) were investigated by means of DFT/ONIOM2 calculations for different models 7T:45T, 9T:45T and 13T:45T. The B3LYP, ωB97X-D, and M06-2X functionals were used in the high-level part of ONIOM2, with PM6 in the lower-level part. The related potential energy surface profiles are constructed based on the ωB97X-D/ONIOM2 method for 13T:45T cluster. Four possible paths are proposed for the oxidation of Tp into sulfoxide and sulfoxide into sulfone using H2O2 as an oxidant over defect and perfect TS-1. The dimerization of sulfoxide and sulfone through Diels–Alder cycloaddition is also studied. It is found that perfect TS-1 is highly unfavorable compared to defect TS-1 (TS-d). The calculated activation energy of Tp oxidation with TS-d is found to be remarkably lower than that without any zeolite catalyst. The calculated results may contribute to the understanding of the reaction mechanism of the catalytic oxidative desulfurization of sulfides in liquid fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Clerici MG, Bellussi G, Romano U (1991) J Catal 129:159–167

    Article  CAS  Google Scholar 

  2. Hulea V, Fajula F, Bousquet J (2001) J Catal 198:179–186

    Article  CAS  Google Scholar 

  3. Kong L, Li G, Wang X (2004) Catal Lett 92(3–4):163–167

    Article  CAS  Google Scholar 

  4. Kong L, Li G, Wang X, Wu B (2006) Energy&Fuels 20:896–902

    CAS  Google Scholar 

  5. Sengupta A, Kamble PD, Basu JK, Sengupta S (2012) Ind Eng Chem Res 51(1):147–157

    Article  CAS  Google Scholar 

  6. Wang W, Li G, Liu L, Chen Y (2013) Microporous Mesoporous Mater 179:165–171

    Article  CAS  Google Scholar 

  7. Lv Q, Li G, Sun H (2014) Fuel 130:70–75

    Article  CAS  Google Scholar 

  8. Du S, Li F, Sun Q, Wang N, Jia M, Yu J (2016) Chem Commun 52(16):3368–3371

    Article  CAS  Google Scholar 

  9. Du S, Chen X, Sun Q, Wang N, Jia M, Valtchev V, Yu J (2016) Chem Commun 52(17):3580–3583

    Article  CAS  Google Scholar 

  10. Sinclair PE, Catlow CRA (1999) J Phys Chem B 103:1084–1095

    Article  CAS  Google Scholar 

  11. Damin A, Bordiga S, Zecchina A, Lamberti C (2002) J Chem Phys 117:226–237

    Article  CAS  Google Scholar 

  12. Sever RR, Root TW (2003) J Phys Chem B 107(17):4090–4099

    Article  CAS  Google Scholar 

  13. Sever RR, Root TW (2003) J Phys Chem B 107(17):4080–4089

    Article  CAS  Google Scholar 

  14. Sinclair PE, Sankar G, Catlow CRA, Thomas JM, Maschmeyer T (1997) J Phys Chem B 101:4232–4237

    Article  CAS  Google Scholar 

  15. Tozzola G, Mantegazza MA, Ranghino G, Petrini G, Bordiga S, Ricchiardi G, Lamberti C, Zulian R, Zecchina A (1998) J Catal 179(1):64–71

    Article  CAS  Google Scholar 

  16. Sankar G, Thomas JM, Catlow CRA, Barker CM, Gleeson D, Kaltsoyannis N (2001) J Phys Chem B 105:9028–9030

    Article  CAS  Google Scholar 

  17. Lamberti C, Bordiga S, Zecchina A, Artioli G, Marra G, Spano G (2001) J Am Chem Soc 123(10):2204–2212

    Article  CAS  Google Scholar 

  18. Barker CM, Gleeson D, Kaltsoyannis N, Catlow CRA, Sankar G, Thomas JM (2002) Phys Chem Chem Phys 4:1228–1240

    Article  CAS  Google Scholar 

  19. Zhuang J, Ma D, Yan Z, Deng F, Liu X, Han X, Bao X, Liu XW, Guo X, Wang X (2004) J Catal 221(2):670–673

    Article  CAS  Google Scholar 

  20. Bonino F, Damin A, Ricchiardi G, Ricci M, Spano G, D’Aloisio R, Zecchina A, Lamberti C, Prestipino C, Bordiga S (2004) J Phys Chem B 108:3573–3583

    Article  CAS  Google Scholar 

  21. Bordiga S, Damin A, Bonino F, Ricchiardi G, Zecchina A, Tagliapietra R, Lamberti C (2003) Phys Chem Chem Phys 5:4390–4393

    Article  CAS  Google Scholar 

  22. Tantanak D, Vincent MA, Hillier IH (1998) Chem Commun: 1031–1032

  23. Atoguchi T, Yao S (2003) J Mol Catal A 191:281–288

    Article  CAS  Google Scholar 

  24. Limtrakul J, Inntam C, Truong TN (2004) J Mol Catal A 27:139–148

    Article  Google Scholar 

  25. Wells DH, Delgass WN, Thomson KT (2004) J Am Chem Soc 126(9):2956–2962

    Article  CAS  Google Scholar 

  26. Panyaburapa W, Nanok T, Limtrakul J (2007) J Phys Chem C 111(8):3433–3441

    Article  CAS  Google Scholar 

  27. Sirijaraensre J, Limtrakul J (2013) Phys Chem Chem Phys 15(41):18093–18100

    Article  CAS  Google Scholar 

  28. Sirijaraensre J, Limtrakul J (2009) Phys Chem Chem Phys 11(3):578–585

    Article  CAS  Google Scholar 

  29. Hansen N, Kerber T, Sauer J, Bell AT, Keil FJ (2010) J Am Chem Soc 132(33):11525–11538

    Article  CAS  Google Scholar 

  30. Van Speybroeck V, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, Lesthaeghe D, Ghysels A, Marin GB, Waroquier M (2011) J Am Chem Soc 133(4):888–899

    Article  Google Scholar 

  31. Dumrongsakda P, Ruangpornvisuti V (2012) Catal Lett 142(1):143–149

    Article  CAS  Google Scholar 

  32. Morpurgo S (2015) J Comput Chem 36(9):660–669

    Article  CAS  Google Scholar 

  33. Van der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) J Phys Chem C 116(9):5499–5508

    Article  Google Scholar 

  34. Yang G, Pidko EA, Hensen EJM (2013) J Phys Chem C 117(8):3976–3986

    Article  CAS  Google Scholar 

  35. Chiu C, Vayssilov GN, Genest A, Borgna A, Rösch N (2014) J Comput Chem 35(10):809–819

    Article  CAS  Google Scholar 

  36. Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J (2009) J Phys Chem C 113(16):6654–6662

    Article  CAS  Google Scholar 

  37. Tranca DC, Hansen N, Swisher JA, Smit B, Keil FJ (2012) J Phys Chem C 116(44):23408–23417

    Article  CAS  Google Scholar 

  38. Sahoo SK, Nair NN (2016) J Comput Chem 37(18):1657–1667

    Article  CAS  Google Scholar 

  39. Marra GL, Artioli G, Fitch AN, Milanesio M, Lamberti C (2000) Microporous Mesoporous Mater 40(1–3):85–94

    Article  CAS  Google Scholar 

  40. Hijar CA, Jacubinas RM, Eckert J, Henson NJ, Hay PJ, Ott KC (2000) J Phys Chem B 104(51):12157–12164

    Article  CAS  Google Scholar 

  41. Henry PF, Weller MT, Wilson CC (2001) J Phys Chem B 105(31):7452–7458

    Article  CAS  Google Scholar 

  42. Yuan S, Si H, Fu A, Chu T, Tian F, Duan Y-B, Wang J (2011) J Phys Chem A 115(5):940–947

    Article  CAS  Google Scholar 

  43. Gamba A, Tabacchi G, Fois E (2009) J Phys Chem A 113(52):15006–15015

    Article  CAS  Google Scholar 

  44. Papayannis DK, Kosmas AM (2014) React Kinet Mech Cat 111(2):709–722

    Article  CAS  Google Scholar 

  45. Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13(14):6670–6688

    Article  CAS  Google Scholar 

  46. Zeng X, Wang H, DeYonker NJ, Mo G, Zhou R, Zhao C (2014) Theor Chem Acc 133:1498–1503

    Article  Google Scholar 

  47. Frisch MJ et al. (2013) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford, CT

  48. Lamberti C, Bordiga S, Arduino D, Zecchina A (1998) J Phys Chem B 102:6382–6390

    Article  CAS  Google Scholar 

  49. Pei S, Zajac GW, Kaduk JA, Faber J, Boyanov BI, Duck D, Fazzini D, Morrison TI, Yang DS (1993) Catal Lett 21(3–4):333–344

    Article  CAS  Google Scholar 

  50. Davis RJ, Liu Z, Tabora JE, Wieland WS (1995) Catal Lett 34(1–2):101–113

    Article  CAS  Google Scholar 

  51. Bordiga S, Coluccia S, Lamberti C, Marchese L, Zecchina A, Boscherini F, Buffa F, Genoni F, Leofanti G (1994) J Phys Chem 98(15):4125–4132

    Article  CAS  Google Scholar 

  52. Wang L, Xiong G, Su J, Li P, Guo H (2012) J Phys Chem C 116(16):9122–9131

    Article  CAS  Google Scholar 

  53. Yudanov IV, Gisdakis P, Valentin CD, Rösch N (1999) Eur J Inorg Chem 12:2135–2145

    Article  Google Scholar 

  54. Castellà-Ventura M, Akacem Y, Kassab E (2008) J Phys Chem C 112(48):19045–19054

    Article  Google Scholar 

  55. Xu H, Han Z, Zhang D, Liu C (2015) J Mol Catal A 398:297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21403038), Guangdong Provincial Natural Science Foundation (2015A030313892), the Training Program for Outstanding Young Teachers in Colleges and Universities in Guangdong Province (YQ2015116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhou, R. & Deng, Y. Thiophene oxidation with H2O2 over defect and perfect titanium silicalite-1: a computational study. Reac Kinet Mech Cat 124, 45–60 (2018). https://doi.org/10.1007/s11144-018-1350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1350-z

Keywords

Navigation