Skip to main content

Advertisement

Log in

Effect of “Reducible” Titania Promotion on the Mechanism of H-Migration in Pd/SiO2 Clusters

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Industrial catalysts, consisting of metal species dispersed on a porous surface, are typically prepared by hydrogen treatment at high temperatures, and the migration of hydrogen constitutes the key elementary reaction that mediates the metal-support interactions and the generation of active catalytic sites. A detailed modeling of these processes is challenging especially for systems involving disordered surfaces. A debated issue is the role of the support “reducibility” on the mechanism of H-spillover processes. Transition-metal oxides such as titania significantly improve the activity and selectivity of catalysts supported on “non-reducible” oxides, such as silica, particularly in hydrogenation and dehydrogenation processes. To gain insight into the mechanism of H-migration in disordered catalysts and nano-particles, a comprehensive DFT-analysis of the potential energy surfaces is carried out for the transfer of H-atoms from a palladium-tetramer catalyst to a silica-support, represented by a substituted siloxane ring, doped with “reducible” titania. The H-migration to non-stoichiometric supports occurs via both a direct and H 2 -assisted transfer of H-atoms when the metal-catalyst is anchored to the non-bonding oxygen atoms of the support (defect sites). The calculations revealed that the transfer to different types of supports proceeds through identical pathways but significantly different barriers. The titania-promotion, as well as the addition of dihydrogen ligands to the catalyst, decreases the direct and H 2 -assisted H-migration barriers. Due to the extended transition state structures, the H2-assisted mechanism provides access to more distant and hindered active centers, and thus can account for the “bottleneck” particle-to-particle (along grain boundaries) transport of hydrogen atoms. The H-migration to titania-promoted stoichiometric (defect-free) supports generates intermetallic Pd-Ti bonds, in contrast to the pristine silica-based catalysts, which do not form analogous bonds between palladium and silicon centers of the support.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khoobiar S (1964) J Phys Chem 68:411

    Article  CAS  Google Scholar 

  2. Benson JE, Kohn HW, Boudart M (1966) J Catal 5:307

    Article  CAS  Google Scholar 

  3. Levy RB, Boudart M (1974) J Catal 32:304

    Article  CAS  Google Scholar 

  4. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley-Interscience, New York, p 450

    Google Scholar 

  5. Ruckenstein E, Sushumna I (1988) In: Paál Z, Menon PG (eds) Hydrogen effects in catalysis. Marcel Dekker, New York, p 259

    Google Scholar 

  6. Conner WC, Falconer JL (1995) Chem Rev 95:759

    Article  CAS  Google Scholar 

  7. Roessner F, Roland U (1996) J Mol Catal A 112:401

    Article  CAS  Google Scholar 

  8. Rozanov VV, Krylov OV (1997) Russ Chem Rev 66:107

    Article  Google Scholar 

  9. Pajonk GM (2000) Appl Catal A 202:157

    Article  CAS  Google Scholar 

  10. Pajonk GM (1994) Heterog Chem Rev 1:329

    CAS  Google Scholar 

  11. Prins R (2012) Chem Rev 112:2714

    Article  CAS  Google Scholar 

  12. Chen L, Cooper AC, Pez GP, Cheng H (2008) J Phys Chem C 112:1755

    Article  CAS  Google Scholar 

  13. Sha X, Chen L, Cooper AC, Pez GP, Cheng H (2009) J Phys Chem C 113:11399

    Article  CAS  Google Scholar 

  14. Hao S, Sholl DS (2013) J Phys Chem C 117:1217

    Article  CAS  Google Scholar 

  15. Niklasson C (1988) Ind Eng Chem Res 27:1984

    Article  CAS  Google Scholar 

  16. Xi Y, Zhang Q, Cheng H (2014) J Phys Chem C 118:494

    Article  CAS  Google Scholar 

  17. Lykhach Y, Staudt T, Vorohkta M, Skala T, Johanek V, Prince KC, Matolin V, Libuda J (2012) J Catal 285:6

    Article  CAS  Google Scholar 

  18. Nakano K, Kusunoki K (1985) Chem Eng Commun 34:99

    Article  CAS  Google Scholar 

  19. Lu J, Aydin C, Browning ND, Gates BC (2012) J Am Chem Soc 134:5022

    Article  CAS  Google Scholar 

  20. Cremer PS, Somorjai GA (1995) J Chem Soc, Faraday Trans 91:3671

    Article  CAS  Google Scholar 

  21. Li Y, Yang RT (2006) J Am Chem Soc 128:726

    Article  CAS  Google Scholar 

  22. Li Y, Yang FH, Yang RT (2007) J Phys Chem C 111:3405

    Article  CAS  Google Scholar 

  23. Jung JH, Rim JA, Lee SJ, Cho SJ, Kim SY, Kang JK, Kim YM, Kim YJ (2007) J Phys Chem C 111:2679

    Article  CAS  Google Scholar 

  24. Huizinga T, Prins R (1981) J Phys Chem 85:2156

    Article  CAS  Google Scholar 

  25. Panayotov DA, Yates JT Jr (2007) J Phys Chem C 111:2959

    Article  CAS  Google Scholar 

  26. Eriksson M, Petersson L-G (1994) Surf Sci 311:139

    Article  CAS  Google Scholar 

  27. Gates BC (1995) Chem Rev 95:511

    Article  CAS  Google Scholar 

  28. Polshettiwar V, Len C, Fihri A (2009) Coord Chem Rev 253:2599

    Article  CAS  Google Scholar 

  29. Corti G, Zhan Y, Wang L, Hare B, Cantrell T, Beaux M II, Prakash T, Ytreberg FM, Miller MA, McIlroy DN (2013) J Phys D 46:505307

    Article  CAS  Google Scholar 

  30. Chen H-W, White JM (1986) J Mol Catal 35:355

    Article  CAS  Google Scholar 

  31. Vannice MA, Neikam WC (1971) J Catal 20:260

    Article  CAS  Google Scholar 

  32. Roland U, Braunschweig T, Roessner F (1997) J Mol Catal A 127:61

    Article  CAS  Google Scholar 

  33. Zolotarev YuA, Dorokhova EM, Nezavibatko VN, Borisov YuA, Rosenberg SG, Velikodvorskaia GA, Neumivakin LV, Zverlov VV, Myasoedov NF (1995) Amino Acids 8:353

    Article  CAS  Google Scholar 

  34. Shishido T, Hattori H (1996) Appl Catal A 146:157

    Article  CAS  Google Scholar 

  35. Hattori H (1993) Studies in surface science and catalysis. Elsevier, Kyoto

    Google Scholar 

  36. Lenz DH, Conner WC (1988) J Catal 112:116

    Article  CAS  Google Scholar 

  37. Chiaranussati P, Gladden LF, Grifiths RW, Jackson SD, Webb G (1993) Trans Inst Chem Eng 71:267

    CAS  Google Scholar 

  38. Carley AF, Edwards HA, Mile B, Roberts MW, Rowlands CC (1994) J Chem Soc Faraday Trans 90:3341

    Article  CAS  Google Scholar 

  39. Nasluzov VA, Rivanenkov VV, Shor AM, Neyman KM, Birkenheuer U, Rosch N (2002) Int J Quant Chem 90:386

    Article  CAS  Google Scholar 

  40. Wu H-Y, Fan X, Kuo J-L, Deng W-Q (2011) J Phys Chem C 115:9241

    Article  CAS  Google Scholar 

  41. Singh AK, Ribas MA, Yakobson BI (2009) ACS Nano 3:1657

    Article  CAS  Google Scholar 

  42. Psofogiannakis GM, Froudakis GE (2009) J Am Chem Soc 131:15133

    Article  CAS  Google Scholar 

  43. Choi S, Jeong K, Park JY, Lee YS (2015) Bull Korean Chem Soc 36:777

    CAS  Google Scholar 

  44. Im J, Shin H, Jang H, Kim H, Choi M (2014) Nature Commun 5:3370

    Google Scholar 

  45. Juarez-Mosqueda R, Mavrandonakis A, Kuc AB, Pettersson LGM, Heine T (2015) Front Chem 3:1

    Article  CAS  Google Scholar 

  46. Cheng H, Chen L, Cooper AC, Sha X, Pez GP (2008) Energy Environ Sci 1:338

    Article  CAS  Google Scholar 

  47. Psofogiannakisa GM, Froudakis GE (2011) Chem Commun 47:7933

    Article  CAS  Google Scholar 

  48. Gates BC, Gucz, L, Knözinger H (eds) (1986) Metal clusters in catalysis. Elsevier, Amsterdam

  49. Estiu GL, Zerner MC (1994) J Phys Chem 98:4793

    Article  CAS  Google Scholar 

  50. Gomes JRB, Lodziana Z, Illas F (2003) J Phys Chem B 107:6411

    Article  CAS  Google Scholar 

  51. Godet J, Pasquarello A (2005) Macroelectron Eng 80:288

    Article  CAS  Google Scholar 

  52. Yokozawa A, Miyamoto Y (1997) Phys Rev B 55:13783

    Article  CAS  Google Scholar 

  53. Cui Q, Musaev DG, Morokuma K (1998) J Chem Phys 108:8418

    Article  CAS  Google Scholar 

  54. Cui Q, Musaev DG, Morokuma KJ (1998) Phys Chem 102:6373

    Article  CAS  Google Scholar 

  55. Dai D, Liao DW, Balasubramanian K (1995) J Chem Phys 102:7530

    Article  CAS  Google Scholar 

  56. Dai D, Balasubramanian K (1995) J Chem Phys 103:648

    Article  CAS  Google Scholar 

  57. Balasubramanian K (1989) J Chem Phys 91:307

    Article  CAS  Google Scholar 

  58. Efremenko I, German ED, Sheintuch M (2000) J Phys Chem A 104:8089

    Article  CAS  Google Scholar 

  59. Zacarias AG, Castro M, Tour JM, Seminario JM (1999) J Phys Chem A 103:7692

    Article  CAS  Google Scholar 

  60. Pereira JCG, Catlow CRA, Price GD (1999) J Phys Chem A 103:3252

    Article  CAS  Google Scholar 

  61. Pereira JCG, Catlow CRA, Price GD (1999) J Phys Chem A 103:3268

    Article  CAS  Google Scholar 

  62. Valerio G, Toulhout H (1996) J Phys Chem 100:10827

    Article  CAS  Google Scholar 

  63. Blöchl PE (2000) Phys Rev B 62:6158

    Article  Google Scholar 

  64. Ruckenstein E, Dadyburjor DB (1983) Rev Chem Eng 1:251

    Article  CAS  Google Scholar 

  65. Che M, Bennett CO (1989) Adv Catal 36:55

    CAS  Google Scholar 

  66. Bell AT (2003) Science 299:1688

    Article  CAS  Google Scholar 

  67. Somorjai GA, Borodko YG (2001) Catal Lett 76:1

    Article  CAS  Google Scholar 

  68. Witham CA, Huang W, Tsung C-K, Kuhn JN, Somorjai GA, Toste FD (2010) Nature Chem 2:36

    Article  CAS  Google Scholar 

  69. Dixon DA, Katz A, Arslan I, Gates BC (2014) Catal Let 144:1785

    Article  CAS  Google Scholar 

  70. Catlow CRA, French SA, Sokol AA, Thomas JM (2005) Phil Trans R Soc A 363:913

    Article  CAS  Google Scholar 

  71. Krylov OV, Kiselev VF (1989) Adsorption and catalysis on transition metals and their oxides. Springer, Berlin

    Google Scholar 

  72. Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Chem Rev 94:2095

    Article  CAS  Google Scholar 

  73. Peri JB (1966) J Phys Chem 70:2937

    Article  CAS  Google Scholar 

  74. Hockey JA, Pethica BA (1971) Trans Farad Soc 57:2247

    Article  Google Scholar 

  75. Conner WC, Pajonk GM, Teichner SJ (1986) Adv Catal 34:1

    CAS  Google Scholar 

  76. Fuchs PL (ed) (2013) Handbook of reagents for organic synthesis, reagents for silicon-mediated organic synthesis. Wiley, New York, p 310

  77. Maiti A, Gee RH, Maxwell R, Saab AP (2007) Chem Phys Lett 440:244

    Article  CAS  Google Scholar 

  78. Goursot A, Papai I, Salahub DR (1992) J Am Chem Soc 114:7452

    Article  CAS  Google Scholar 

  79. de Carneiro JWM, de Cruz MTM (2008) J Phys Chem A 112:8929

    Article  CAS  Google Scholar 

  80. Fogelberg J, Eriksson M, Dannetun H, Petersson LG (1995) J Appl Phys 78:988

    Article  CAS  Google Scholar 

  81. Nava P (2005) Density functional theory calculations on palladium clusters and on an AgInS semiconductor compound. Cuvillier Verlag, Gottingen

    Google Scholar 

  82. Asatryan R, Ruckenstein E (2014) Catal Rev Sci Eng 56:403

    Article  CAS  Google Scholar 

  83. Kang JH, Shin EW, Kim WJ, Park JD, Moon SH (2000) Catal Today 63:183

    Article  Google Scholar 

  84. Rieck JS, Bell AT (1985) J Catal 96:88

    Article  CAS  Google Scholar 

  85. Chenakin SP, Melaet G, Szukiewicz R, Kruse N (2014) J Catal 312:1

    Article  CAS  Google Scholar 

  86. Ruckenstein E (1987) The role of interactions and surface phenomena in sintering and redispersion of supported metal catalysts. In: Stevenson SA, Dumesic JA, Baker RTK, Ruckenstein E (eds) Metal-support interactions in catalysis, sintering and redispersion. van Nostrand Reinhold Company, New York, p 139

    Google Scholar 

  87. Bracey JD, Burch R (1984) J Catal 86:384

    Article  CAS  Google Scholar 

  88. Wang S-Y, Moon SH, Albert VM (1981) J Catal 71:167

    Article  CAS  Google Scholar 

  89. Venezia AM, Di Carlo G, Pantaleo G, Liotta LF, Melaet G, Kruse N (2009) Appl Catal B 88:430

    Article  CAS  Google Scholar 

  90. Buijink JFK, Lange JP, Bos ANR, Horton AD, Nielein FGM (2008) In: Oyama ST (ed) Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Elsevier, Amsterdam, p 355

    Chapter  Google Scholar 

  91. Castillo R, Koch B, Ruiz P, Delmon B (1996) J Catal 161:524

    Article  CAS  Google Scholar 

  92. Dadyburjor DB, Jewur SS, Ruckenstein E (1979) Catal Rev Sci Eng 19:293

    Article  CAS  Google Scholar 

  93. Sankar G, Thomas JM, Catlow CRA, Barker CM, Gleeson D, Kaltsoyannis N (2001) J Phys Chem B 105:9028

    Article  CAS  Google Scholar 

  94. Gao X, Wachs IE (1999) Catal Today 51:233

    Article  CAS  Google Scholar 

  95. Dutoit DCM, Schneider M, Baiker A (1995) J Catal 153:165

    Article  CAS  Google Scholar 

  96. Kumar D, Ali A (2012) Energy Fuels 26:2953

    Article  CAS  Google Scholar 

  97. Chen J, Halin SJA, Schouten JC, Nijhuis TA (2011) Faraday Discuss 152:321

    Article  CAS  Google Scholar 

  98. Li Y, Xu B, Fan Y, Feng N, Qiu A, He JMJ, Yang H, Chena Y (2004) J Mol Catal A 216:107

    Article  CAS  Google Scholar 

  99. Dropsch H (1997) Baerns M Appl Catal A 158:163

    Article  CAS  Google Scholar 

  100. Bowker M, Stone P, Bennett RA, Perkins N (2002) Surf Sci 497:155

    Article  CAS  Google Scholar 

  101. Wells DH Jr, Delgass WN, Thomson KT (2004) J Am Chem Soc 126:2956

    Article  CAS  Google Scholar 

  102. Oldroyd RD, Sankar G, Thomas JM, Ozkaya D (1998) J Phys Chem B 102:1849

    Article  CAS  Google Scholar 

  103. Hu S, Willey RJ, Notari B (2003) J Catal 220:240

    Article  CAS  Google Scholar 

  104. Liu T, Hacarlioglu P, Oyama ST, Luoa M-F, Pan X-R, Lu J-Q (2009) J Catal 267:202

    Article  CAS  Google Scholar 

  105. Adams BD, Chen A (2011) Materialstoday 14:282

    CAS  Google Scholar 

  106. Moc J, Musaev DG, Morokuma K (2000) J Phys Chem A 104:11606

    Article  CAS  Google Scholar 

  107. Wang Y, Cao Z, Zhang Q (2003) Chem Phys Lett 376:96

    Article  CAS  Google Scholar 

  108. Asatryan R, Bozzelli JW, Ruckenstein E (2012) J Phys Chem A 116:11618

    Article  CAS  Google Scholar 

  109. Asatryan R (2010) Chem Phys Lett 498:263

    Article  CAS  Google Scholar 

  110. Asatryan R, Bozzelli JW, da Silva G, Swinnen S, Nguyen MT (2010) J Phys Chem A 114:6235

    Article  CAS  Google Scholar 

  111. Asatryan R, Ruckenstein E (2012) Dihydrogen Catalysis Relevant to the Fixation of Nitrogen, 38th Northeast Regional ACS Meeting. Rochester, NY

    Google Scholar 

  112. Bianchi D, Lacroix M, Pajonk GM, Teichner SJ (1981) J Catal 68:411

    Article  CAS  Google Scholar 

  113. Spencer MS, Burch R (1990) Golunski SE J Catal 126:311

    Article  CAS  Google Scholar 

  114. Rößner F (2008) Handbook of heterogeneous catalysis, Part 5, spillover effects. Wiley, New York

    Google Scholar 

  115. Becke AD (1992) J Chem Phys 96:2155

    Article  CAS  Google Scholar 

  116. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  117. Dunning Jr TH, Hay PJ (1976). In Schaefer III HF (ed) Modern theoretical chemistry, vol 3, p 1. Plenum, New York

  118. Frenking G, Deubel DV (2005) Theoretical aspects of transition metal catalysis. Springer, Berlin

    Google Scholar 

  119. Limtrakul J, Tantanak D (1995) J Mol Struct Theochem 358:179

    Article  CAS  Google Scholar 

  120. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  121. Barone G, Duca D, Ferrante F, LaManna G (2010) Int J Quant Chem 110:558

    Article  CAS  Google Scholar 

  122. Tauster SJ (1987) Acc Chem Res 20:389

    Article  CAS  Google Scholar 

  123. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029

    Article  CAS  Google Scholar 

  124. Asatryan R, Ruckenstein E (2013) J Phys Chem A 117:10912

    Article  CAS  Google Scholar 

  125. Fayet P, Kaldor A, Cox DM (1990) J Chem Phys 92:254

    Article  CAS  Google Scholar 

  126. Pelzer AW, Jellenek J, Jackson KA (2013) J Phys Chem A 117:10407

    Article  CAS  Google Scholar 

  127. Ni M, Zeng Z (2009) J Mol Structure: Theochem 910:14

    Article  CAS  Google Scholar 

  128. Minaev BF, Ågren H (2001) Adv Quant Chem 40:191

    Article  CAS  Google Scholar 

  129. Efremenko I (2001) J Mol Catal A 173:19

    Article  CAS  Google Scholar 

  130. German ED, Efremenko I, Sheintuch MJ (2001) Phys Chem A 105:11312

    Article  CAS  Google Scholar 

  131. Frisch MJ et al (2003) Gaussian 03, revision B04. Gaussian Inc, Pittsburgh

    Google Scholar 

  132. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1 TCI, University of Wisconsin, Madison

  133. Johansson A, Forsth M, Rosen A (2003) Surf Sci 529:247

    Article  CAS  Google Scholar 

  134. Dashevskii VG, Asatryan R, Baranov AP (1978) J Struct Chem 19:404

    Article  Google Scholar 

  135. Dashevskii VG, Asatryan R, Baranov AP (1978) J Struct Chem 19:678

    Article  Google Scholar 

  136. Chen B, Falconer JL (1992) J Catal 134:737

    Article  CAS  Google Scholar 

  137. Kramer R, Andre M (1979) J Catal 58:287

    Article  CAS  Google Scholar 

  138. Zuegg H, Kramer R (1986) Effect of H2 on the catalytic activity of Pt-SiO2 catalysts. In: Baker R, Tauster S, Dumesic J (eds), ACS Symp Series, vol 298, Washington DC, p 145

  139. Merte LR, Peng G, Bechstein R, Rieboldt F, Farberow CA, Grabow LC, Kudernatsch W, Wendt S, Lægsgaard E, Mavrikakis M, Besenbacher F (2012) Science 336:889

    Article  CAS  Google Scholar 

  140. Zhang Q, Tang S, Wallace RM (2001) Appl Surf Sci 172:41

    Article  CAS  Google Scholar 

  141. Zhou C, Wu J, Nie A, Forrey RC, Tachibana A, Cheng H (2007) J Phys Chem C 111:12773

    Article  CAS  Google Scholar 

  142. Mori T, Masuda H, Imai H, Miyamoto A, Hasebe R, Murakami Y (1983) J Phys Chem 87:3648

    Article  CAS  Google Scholar 

  143. \(\varDelta {\text{H}}^{\text{o}}_{\text{f}}\) (298 K) = 57.79 kcal mol−1, NIST Chemistry Webbook (2011)

  144. Yamabe T, Yamashita K, Kaminoyama M, Koizumi M, Tachibana A, Fukui K (1984) J Phys Chem 88:1459

    Article  CAS  Google Scholar 

  145. Woolley M, Khairallah GN, da Silva G, Donnelly PS, O’Hair RAJ (2014) Organometallics 33:5185

    Article  CAS  Google Scholar 

  146. Buszeka RJ, Francisco JS, Anglada JM (2011) Int Rev Phys Chem 30:335

    Article  CAS  Google Scholar 

  147. Iuga C, Alvarez-Idaboy R, Vivier-Bunge A (2011) J Phys Chem A 115:5138

    Article  CAS  Google Scholar 

  148. Kebede MA, Varner ME, Scharko NK, Gerber RB, Raff JD (2013) J Am Chem Soc 135:8606

    Article  CAS  Google Scholar 

  149. Shi F-Q, Li X, Xia Y, Zhang L, Yu Z-X (2007) J Am Chem Soc 129:15503

    Article  CAS  Google Scholar 

  150. Blanco-Rey M, Wales DJ, Jenkins SJ (2009) J Phys Chem C 113:16757

    Article  CAS  Google Scholar 

  151. Fu Q, Wagner T, Olliges S, Carstanjen H-D (2005) J Phys Chem B 109:944

    Article  CAS  Google Scholar 

  152. Ruckenstein E (1986) Interactions and surface phenomena in supported metal catalysts. In: Baker R, Tauster S, Dumesic J (Eds.), ACS Symposium Series, vol 298, Washington DC, p 153

  153. Haller GL, Resasco DE (1989) Adv Catal 36:173

    CAS  Google Scholar 

  154. Juszczyk W, Karpiński Z, Łomot D, Pielaszek J (2003) J Catal 220:299

    Article  CAS  Google Scholar 

  155. Meng JH, He ShGJ (2014) Phys Chem Lett 5:3890

    Article  CAS  Google Scholar 

  156. Wass DF, Chapman AM (2013) Top Curr Chem 334:261

    Article  Google Scholar 

  157. Petkov PS, Petrova GP, Vayssilov GN, Rösch N (2010) J Phys Chem C 114:8500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ruckenstein fund and the National Science Foundation under grant CBET-1330311. We would like to thank the reviewers for valuable comments. We acknowledge also the CCR SUNY at Buffalo for providing High Performance Computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubik Asatryan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2030 kb)

Appendix

Appendix

1.1 Appendix 1: Transfer of the Second H-atom in Primary Radicals

The removal of the first H-atom from the molecular intermediates II or III, representing the H-atom diffusion over the support, generates the primary radicals IV (Scheme 1). It is important to examine also the H-spillover of the remaining second H-atom of the Pd4 cluster onto the support.

Table 6 presents two secondary H-spillover processes for 2H2-capped radicals IV. The results indicate that the kinetic barriers are fairly high, compared to the first H-migration. Again, the promotion by titania decreases the barrier.

Table 6 Forward (\(\varDelta E_{fwd}^{\# }\)) and reverse (\(\varDelta E_{rev}^{\# }\)) barriers and reaction energies (Δ R E) for the second H-transfer in 2H2-capped open-shell (H2)2Pd4H catalyst onto a non-stoichiometric support

1.2 Appendix 2: The Role of Spin-Multiplicity

The current calculations, in accord with literature data, show that the ground state spin multiplicity of the bare Pd4 is a triplet, whereas the hydrogenated complex Pd42H is a singlet (cf. [58, 106, 127]). Therefore, a spin-crossing is expected to occur in the dissociative chemisorption of H2 on the bare Pd4, even though the product formation half-reaction, starting from TS in a singlet state, could well characterize the reaction probability. However, it is not expected any nonadiabatic transition between PESs corresponding to different spins for the activation and hydrogen migration in reactions over the palladium tetramer supported on pristine silica and doped by titania catalysts, which are all ground state singlets. The calculations confirmed that there is no intersystem crossing along the reaction pathways for the metabolism of hydrogen in supported systems. In addition, the triplet state reactions are more energy demanding than the singlet ones. Note also that no changes in the ground state spin multiplicity of Pd4 and of some other small Pdn clusters (n = 2–4, 7, 13) have been found as a result of molecular adsorption [126].

To evaluate the possible role of the high-spin states on H-migration to a defect-free surface, the singlet –state pathway involving the 2H2-capped catalyst (Fig. 8) was recalculated for the triplet state PES. The singlettriplet splitting (ΔEST = 12.38 kcal mol−1) evaluated at B3LYP level is expected to be somewhat underestimated because of the over-stabilization of the high-spin state energies by this functional [82, 108]. Additional calculations based on the pure GGA-BP86 functional, indeed, provide the somewhat higher value of 15.81 kcal mol−1. However, this insignificant difference cannot alter the general conclusions involving the high-spin states at the B3LYP level.

The triplet pathway is also not significant because of the presence of the barrier of 23.7 kcal mol−1 height on the triplet route leading to the coordination of palladium cluster to a bridged O-atom. The triplet pathway could play a role only if the triplet state population is sufficiently high. However, lower by ca. 16 kcal mol−1 the singlet state reagent generates H-migration, and produces an intermetallic Pd-Ti bond and a H2O-moiety, at almost the same barrier of 23.5 kcal mol−1 (Fig. 7).

1.3 Appendix 3: Hydrogenolysis and Activation of the Second H2 Molecule

As noted in Table 4, in some titania-promoted systems, the nascent H2 molecule (co-catalyst HAHB) undergoes an interface heterolytic cleavage (hydrogenolysis) instead of H 2 -assisted transfer, or ligates molecularly to the metal. This can be explained by the lower coordination of Pd4 (fewer bonds to other Pd and H-atoms, as well as dihydrogen ligands), examined in Appendix 1.

Table 4 involves two hydrogenolysis reactions of the low-coordinated catalysts containing none- or one-H2 ligand. In both cases, the interfacial Pd–O bonds activate heterolytically the dihydrogen to form hydridic and protic H-atoms via almost equal barriers (ca. 15 kcal mol−1), almost independent of the number of adsorbed H2 ligands. Such a small effect of the H2-ligation constitutes an interesting issue which provides evidence for the dominance of interfacial forces in these reactions, as it occurs during H2 activation by the closed-shell AuCeO2 + catalyst [155]. By analogy, the covalently bound Pd ion can be considered as a strong Lewis acid, with the O2− ion viewed as a Lewis base. This provides a synergistic effect of the two separated sites with counter polarity, called intermolecular frustrated Lewis pairs [156].

Thus, the H2-assisted reactions generally occur when a basic coordination-sphere of the metal cluster (Pd4) is saturated by H-atoms and/or H2-ligands. The coordination deficiency concerns not only the defective systems described in Table 4 (palladium cluster residing on two NBOs), but also the stoichiometric-supported catalysts, where palladium is linked to the valence-saturated oxygen atoms of the support (OH-groups with H-cover atoms noted in parentheses in Figs. 1, 2). The stoichiometric-supported catalysts favor the SMSI interactions, as noted in Sect. 4.2.

It should be emphasized that all hydrogenolysis reactions of titania-promoted systems are thermodynamically unfavorable (all are endothermic), in contrast to the alternative exothermic DHC-reactions (cf. Table 4). Importantly, all extended models included in Table 4 result in H-migration reactions via DHC pathways. The hydrogenolysis does not occur even if the absorbed and adsorbed hydrogen species are completely absent. Perhaps, this is due to the saturation of Pd4 through strong bonding with the third oxygen atom as another anchorage point of the siloxane ring (tripodally anchored to silica via covalent bonds with oxygen atoms).

For comparison, the barriers for the interfacial hydrogenolysis (heterolytic splitting) of the first dihydrogen molecule along the PdO covalent bond of the silica-supported catalyst (initially being NBO), was found to be 12.83 kcal mol−1, which is close to the hydrogenolysis barrier for the second H2 molecule mentioned above (ca. 15 kcal mol−1, Table 4).

The hydrogenolysis on supported systems can also be compared with the second H2-activation results on bare metallic palladium clusters present in the literature. As shown by Morokuma and co-workers [106], the activation of the second H2-molecule by Pd4 cluster is thermodynamically and kinetically unfavorable because of the instability of the products [106]. However, the process can well occur when a support is involved, as shown in this study (vide supra). Notably, Wang et al. found that the second molecular hydrogen can be fragmented over the Pd6 cluster of distorted Oh-symmetry through an overall barrier of ca. 9 kcal mol−1 height [107]. This barrier has a value in the range of those found in this paper for supported systems.

1.4 Appendix 4: Atomic and Molecular Hydrogen Coverages and H2-Intercalation

The saturation of a support and a catalyst can alter the H-migration barriers, as particularly discussed by Singh et al. [41] while considering the H-spillover for Pd4 catalyst on graphene. However, even at the saturation limit of the Pd4 catalyst, only one out of the 9H2 molecules has been found to be dissociated to form two hydridic atoms, which rationalizes the model employed in the current paper. Whereas, the GGA-PBE barrier for H-migration has been found to be too high for pristine graphene, the H-saturation of graphene reduced the barrier to ca. 16 kcal mol−1, accessible even at ambient temperatures [41].

In order to get an idea on the H-atom accommodation features and the coverage limits on the silica support, a fully saturated symmetric complex was designed containing 18H atoms. The three axial positions were connected to the three off-ring surface oxygen atoms in a “tripod” configuration. The remaining 15 hydridic atoms were placed at all possible ligand positions of the four octahedral Pd-centers. A relaxed full optimization of this structure led to the spontaneous recombination of the eight hydridic atoms to form four Kubas type dihydrogen ligands bound to the basic Pd-centers. Only two H2 molecules remain activated at the proximity of the reactive (basic) palladium centers at bridging positions, in addition to the three isolated H-atoms located at the top(non-reactive) sites of Pd4-cluster. Since the bare Pd4H18 complex accommodates only two hydridic H-atoms and 8H2 molecules (see also [41]), this result suggests a specific role of the oxidic support in activating the nascent H2-molecules. Furthermore, the defective sites introduce additional activation features. For illustration, the two extra hydridic atoms were added to the TS structure of the direct H-migration that initially contained only two hydridic atoms (with a barrier of 24.49 kcal mol−1 shown in Table 1). The full TS-search (gradient-norm optimization) led to the restoration of the H2-ligand in a product-like structure. Thus, the interplay between the different types of support centers can vary the oxidation states of the Pd-atoms, and thus control the amount of the retained H2-ligands. This seems to be in contrast with platinum which is prone to dissociate most of the nascent dihydrogen molecules [157]. A detailed study of this problem is beyond the scope of current paper, and constitutes an interesting open issue.

Another specific role of the dihydrogen is its “intercalation” between the catalyst and the support at the interface regions. Figure 9 compares a full-contact “tripod” structure of Pd4 located over the hexahydroxytrioxatrisilinane ring, with an actual reagent of the H-spillover in 2H2-capped systems involving a double-contact “dipod” structure where the reactive Pd-atom is moved away (separated) from the surface by an “intercalated” dihydrogen ligand.

Fig. 9
figure 9

Two alternative reagents involving the hydrogenated catalyst Pd4(H)2(H2)2, covalently bound to two NBO defect-centers of the silica support indicated by small arrows. a “Dipod” configuration involves a Pd1 vertex separated from the support by H2-ligand. b “Tripod” configuration involves full palladium tetrahedron contact with three support oxygen atoms

The somewhat higher energy of the “dipod” structures provides lower H-spillover barriers for all considered systems: 6.45, 4.78, and 0.84 kcal mol−1, respectively, for pure silica, the binary oxide, and replaced by titania supports (Table 1). The spillover barrier onto the replaced by titania support is exceedingly low due to the interface location (“intercalation”) of the H2-ligand. These results strongly suggest a specific role of the dihydrogen as a ligand to a Pd nanoparticle at the interface regions. This constitutes an important new aspect in H-spillover phenomenon, albeit a partial contact of the catalyst nanoparticle with a support is known in literature. For instance, Pt4-cluster is known to be residing on a carbon nanotube only through one vertex, independent of hydrogen saturation [41, 45].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asatryan, R., Ruckenstein, E. Effect of “Reducible” Titania Promotion on the Mechanism of H-Migration in Pd/SiO2 Clusters. Catal Lett 146, 398–423 (2016). https://doi.org/10.1007/s10562-015-1642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1642-0

Keywords

Navigation