Skip to main content
Log in

Theoretical adsorption enthalpies of alkyl chlorides in acidic zeolite catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The adsorption enthalpies, ΔHad, of a series of alkyl chlorides in acidic (H-FAU) zeolite have been investigated using density functional theory (DFT) and molecular mechanics methods. Two models were employed to simulate the zeolite cluster, each containing one Brønsted acid site. The first model, corresponding to the formula Al(OH)2(OHp)(SiOH2)11, forms a 12-membered ring (12T) constructed from 11 Si tetrahedral atoms and one Al atom in the windows of the twelve O atoms and has been fully optimized at the B3LYP/6-31+G(d,p) level of theory. The second model is represented by the more realistic cluster of 84 tetrahedral units (84T) and has been examined with the help of the ONIOM2 approach using the two layered schemes B3LYP/6-31+G(d,p):UFF and M06-2X/6-31+G(d,p):UFF in two series of calculations. The latter series using the newly developed M06-2X functional by Truhlar and coworkers (Zhao et al., J Chem Phys 123:161103, 2005; Zhao and Truhlar, Theor Chem Acc 120:215, 2008), is expected to make a more reliable and realistic estimation of the effect of the dispersion forces which are quite important in this type of systems. The calculated structural variations and adsorption enthalpies of the van der Waals 1:1 adsorption complex assumingly formed, are shown to exhibit an impressive dependence both on the size of the zeolite cluster model and on the theoretical method employed, particularly the M06-2X functional. Indeed, the M06-2X calculations bring out most clearly the important role and the significant contribution of the dispersion forces to the adsorption enthalpies of a series of the alkyl chlorides on acidic zeolite leading to ΔHad values higher by more than 30 % compared to the B3LYP results. Finally, the present calculations reconfirm the dependence of the interaction energy on the size and the branching of the alkyl radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. López-Fonseca R, Aranzabal A, Steltenpohl P, Gutiérrez-Ortiz JI, González-Velasco JR (2000) Catal Today 62:367

    Article  Google Scholar 

  2. Pistarino C, Finocchio E, Romezzano G, Brichese F, DiFelice R, Busca G, Baldi M (2000) Ind Eng Chem Res 39:2752

    Article  CAS  Google Scholar 

  3. Finocchio E, Pistarino C, Dellepiane S, Serra B, Braggio S, Baldi M, Busca G (2002) Catal Today 75:263

    Article  CAS  Google Scholar 

  4. Svelle S, Aravinthan S, Bjørgen M, Lillerud KP, Kolboe S, Dahl IM, Olsbye U (2006) J Catal 241:243

    Article  CAS  Google Scholar 

  5. Wei Y, Zhang D, Liu Z, Su BL (2006) J Catal 238:46

    Article  CAS  Google Scholar 

  6. Olsbye U, Saure OV, Muddada B, Bordiga S, Lamberti C, Nilsen MH, Lillerud KP, Svelle S (2011) Catal Today 171:211

    Article  CAS  Google Scholar 

  7. Jaumain D, Su BL (2003) J Mol Catal A 197:263

    Article  CAS  Google Scholar 

  8. Noronha LA, Souza-Aguiar EF, Mota CJA (2005) Catal Today 101:9

    Article  CAS  Google Scholar 

  9. Kanyi CW, Doetschman DC, Schulte J (2009) Microporous Mesoporous Mater 117:48

    Article  CAS  Google Scholar 

  10. Svelle S, Kolboe S, Olsbye U, Swang O (2003) J Phys Chem B 107:5251

    Article  CAS  Google Scholar 

  11. Corrêa RJ, Mota CJA (2002) Phys Chem Chem Phys 4:4268

    Article  Google Scholar 

  12. Corrêa RJ, Sousa-Aguiar EF, Ramirez-Solis A, Zicovich-Wilson C, Mota CJA (2002) J. Phys Chem B 108:10658

    Article  Google Scholar 

  13. Rosenbach N, Mota CJA (2005) J Mol Struct (THEOCHEM) 731:157

    Article  CAS  Google Scholar 

  14. Franco M, Rosenbach N Jr, Ferreira GB, Guerra ACO, Kover WB, Turci CC, Mota CJA (2008) J Am Chem Soc 130:1592

    Article  CAS  Google Scholar 

  15. Kanyi CW, Doetschman DC, Yang SW, Schulte J, Yan K, Jones BR (2008) Microporous Mesoporous Mater 108:103

    Article  CAS  Google Scholar 

  16. Kanyi CW, Doetschman DC, Schulte J, Yan K, Wilson RE, Jones BR, Kowenje CO, Yang SW (2009) Microporous Mesoporous Mater 92:292

    Article  Google Scholar 

  17. Shah R, Gale JD, Payne MC (1997) J Phys Chem B 101:4787

    Article  CAS  Google Scholar 

  18. Jeanvoine Y, Angyan JG, Kresse G, Hafner J (1998) J Phys Chem B102:5573

    Article  Google Scholar 

  19. Hillier IH (1999) J Mol Struct (THEOCHEM) 463:45

    Article  CAS  Google Scholar 

  20. Sauer J, Sierka M (2000) J Comput Chem 21:1470

    Article  CAS  Google Scholar 

  21. Hill JR, Freeman CM, Delley B (1999) J Phys Chem A 103:3772

    Article  CAS  Google Scholar 

  22. Solans-Monfort X, Sodupe M, Branchadell V, Sauer J, Orlando R, Ugliengo P (2005) J Phys Chem B 109:3539

    Article  CAS  Google Scholar 

  23. Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Chem Rev 94:2095

    Article  CAS  Google Scholar 

  24. Limtrakul J (1995) Chem Phys 193:79

    Article  CAS  Google Scholar 

  25. Sinclair PE, de Vries AH, Sherwood P, Catlow CRA, van Santen RA (1998) J Chem Soc, Faraday Trans 94:3401

    Article  CAS  Google Scholar 

  26. Brandle M, Sauer J (1998) J Am Chem Soc 120:1556

    Article  Google Scholar 

  27. Roggero I, Civalleri B, Ugliengo P (2001) Chem Phys Lett 341:625

    Article  CAS  Google Scholar 

  28. Solans-Monfort X, Bertran J, Branchadell V, Sodupe M (2002) J Phys Chem 106:10220

    Article  CAS  Google Scholar 

  29. Raksakoon C, Limtrakul J (2003) J Mol Struct (THEOCHEM) 631:147

    Article  CAS  Google Scholar 

  30. Bonino F, Damin A, Bordiga S, Lambert C, Zecchina A (2003) Langmuir 19:2155

    Article  CAS  Google Scholar 

  31. Sillar K, Burk P (2004) J Phys Chem B 108:9893

    Article  CAS  Google Scholar 

  32. Rosenbach N, Mota CJA (2008) Appl Catal A 336:54

    Article  CAS  Google Scholar 

  33. Rosenbach N, dos Santos APA, Franco M, Mota CJA (2010) Chem Phys Lett 485:124

    Article  CAS  Google Scholar 

  34. Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J (2009) J Phys Chem C 113:6654

    Article  CAS  Google Scholar 

  35. Pérez-Badell Y, Solans-Monfort X, Sodupe M, Montero LA (2010) Phys Chem Chem Phys 12:442

    Article  Google Scholar 

  36. Uzunova EL, Mikosch H, Nikolov GS (2012) Int J Quantum Chem 113:723

    Article  Google Scholar 

  37. Nie X, Janik MJ, Guo X, Song C (2012) J Phys Chem C 116:4071

    Article  CAS  Google Scholar 

  38. Zhao Y, Schultz NE, Truhlar D (2005) J Chem Phys 123:161103

    Article  Google Scholar 

  39. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  40. Grimm S (2006) J Comput Chem 27:1787

    Article  Google Scholar 

  41. Marom N, Tkatchenko A, Rossi M, Gobre VV, Hod O, Scheffler M, Kronik L (2011) J Chem Theory Comput 7:3944

    Article  CAS  Google Scholar 

  42. Papayannis DK, Kosmas AM (2010) J Mol Struct (THEOCHEM) 957:47

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda KR, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Straroverov VN, Kobayashi R, Normand J, Raghavashari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo VC, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford, CT

    Google Scholar 

  44. Kohn W, Sham L (1965) Phys Rev A 140:1133

    Article  Google Scholar 

  45. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  46. Lee C, Tang W, Parr RG (1988) Phys Rev B37:785

    Article  Google Scholar 

  47. Soscún H, Castellano O, Hernadez J, Arrieta F, Bermúdez Y, Hinchliffe A, Brussin MR, Sanchez M, Sierraalta A, Ruette F (2007) J Mol Catal A 278:165

    Article  Google Scholar 

  48. Datt A, Fields D, Larsen SC (2012) J Phys Chem C 116:21382

    Article  CAS  Google Scholar 

  49. Maseras F, Morokuma K (1995) J Comput Chem 16:1170

    Article  CAS  Google Scholar 

  50. Dapprich S, Komaromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (THEOCHEM) 461:1

    Article  Google Scholar 

  51. Kustov LM, Kazansky VB, Beran S, Kubelkova L, Jiru P (1987) J Phys Chem 91:5247

    Article  CAS  Google Scholar 

  52. Trombetta M, Armaroli T, Alejandre AG, Solis JR, Busca G (2000) Appl Catal A Gen 192:125

    Article  CAS  Google Scholar 

  53. Frende D, Klinowski J, Hamdan H (1988) Chem Phys Lett 149:355

    Article  Google Scholar 

  54. Arstad B, Kolboe S, Swang O (2002) J Phys Chem B 106:12722

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnie M. Kosmas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papayannis, D.K., Kosmas, A.M. Theoretical adsorption enthalpies of alkyl chlorides in acidic zeolite catalysts. Reac Kinet Mech Cat 111, 709–722 (2014). https://doi.org/10.1007/s11144-013-0654-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0654-2

Keywords

Navigation