Skip to main content
Log in

Synthesis of MgO nanocatalyst in water-in-oil microemulsion for CO oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Periclase-like magnesia nanoparticles (MgO(μ) NPs) were obtained by calcination at ≥ 400 °C of brucite-like Mg(OH)2 NPs synthesized in water-in-n-heptane microemulsion system stabilized by a mixture of cationic and nonionic surfactants. The bulk and surface properties of the hydroxide NPs were characterized, before and/or after calcination at 400, 600 and 800 °C by means of thermogravimetry, X-ray powder diffractometry, X-ray photoelectron spectroscopy (XPS), electron microscopy (SEM/HRTEM) and N2 sorptiometry. The results obtained could help revealing that the yielding MgO(μ) NPs assume high-temperature stable (up to 800 °C) crystallite structure (cubic) and size (25–30 nm), and surface area (93–68 m2 g−1), mesopore size (15–21 nm), morphology (coalesced platelets) and microstructure ((100) and (200) faceted) XPS-implied moderate surface basicity, and ability to ionosorb O2 molecules and disproportionate CO molecules have rendered MgO(μ) NPs a catalyst that is capable of triggering the CO oxidation at a temperature as low as 50 °C, as well as undertaking 50% CO conversion at a temperature as low as 180 °C. To the best of our knowledge, no such a low CO oxidation light-off temperature has hitherto been reported for MgO bulk catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lox ESJ, Engler BH (1997) Environmental catalysis—mobile sources. In: Knözinger G, Ertl H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 4. Wiely, Weinheim, pp 1559–1633

    Google Scholar 

  2. Garten RL, Dalla Betta RA, Schlatter JC (1997) Catalytic combustion. In: Knözinger G, Ertl H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 4. Wiely, Weinheim, pp 1668–1677

    Google Scholar 

  3. Prasad R, Kennedy LA, Ruckenstein E (1984) Catal Combust Catal Rev 26:1–58

    Article  CAS  Google Scholar 

  4. Zaki MI, Hasan MA, Pasupulety L, Fouad NE, Knozinger H (1999) CO and CH4 total oxidation over manganese oxide supported on ZrO2, TiO2, TiO2-Al2O3 and SiO2-Al2O3 catalysts. New J Chem 23:1197–1202

    Article  CAS  Google Scholar 

  5. Lou Y et al (2014) Promoting effects of In2O3 on Co3O4 for CO oxidation: tuning O2 activation and CO adsorption strength simultaneously. ACS Catal 4:4143–4152

    Article  CAS  Google Scholar 

  6. Polychronopoulou K et al (2017) Rapid microwave assisted sol-gel synthesis of CeO2 and CexSm1−xO2 nanoparticle catalysts for CO oxidation. J Mol Catal 428:41–55

    Article  CAS  Google Scholar 

  7. Bumajdad A, Hasan MA, Zaki MI, Mekhemer GAH, Pasupulety L, Mathew A (2010) Impacts of CuOx additive on the CO oxidation activity and related surface and bulk properties of a NANO-CeO2 catalyst. Reac Kinet Mech Cat 99:345–359

    CAS  Google Scholar 

  8. Jia AP, Deng Y, Hu GS, Me Luo MF, Lu JQ (2016) Kinetic and activity study of CO oxidation over CuO–MnOx–CeO2 catalysts. Reac Kinet Mech Cat 117:503–520

    Article  CAS  Google Scholar 

  9. Henrich VE, Cox PA (1993) Fundamentals of gas-surface interactions on metal oxides. Appl Surf Sci 72:277–284

    Article  CAS  Google Scholar 

  10. Zaki MI, Knözinger H (1987) Low-temperature IR carbonyl spectra and characterization of adsorption sites on metal oxide surfaces. In: Kulkarni DD, Mashelkar RA, Sharma MM (eds) Proceedings of 2nd international conference on chemical reaction engineering, vol. 1. Wiley-Eastern, New Delhi, pp. 19–30.

  11. Iordan A, Zaki MI, Kappenstein C (2004) Formation of carboxy species at CO/Al2O3 interfaces. Impacts of surface hydroxylation, potassium alkalization and hydrogenation as assessed by in situ FTIR spectroscopy. Phys Chem Chem Phys 6:2502–2512

    Article  CAS  Google Scholar 

  12. Che M, Tench AJ (1982) Characterization and reactivity of mononuclear oxygen species on oxide surfaces. Adv Catal 31:77–133

    CAS  Google Scholar 

  13. Che M, Tench AJ (1983) Characterization and reactivity of molecular oxygen species on oxide surfaces. Adv Catal 32:1–148

    CAS  Google Scholar 

  14. Kung HH, Kung MC (1985) Selective oxidative dehydrogenation of butenes on ferrite catalysts. Adv Catal 33:159–198

    CAS  Google Scholar 

  15. Zaki MI, Hasan MA, Pasupulety L (2000) Influence of CuOx additives on CO oxidation activity and related surface and bulk behaviours of Mn2O3, Cr2O3 and WO3 catalysts. Appl Catal A 198:247–259

    Article  CAS  Google Scholar 

  16. Yamazoe N, Teraoka Y (1990) Oxidation catalysis of perovskites—relationships to bulk structure and composition (valency, defect, etc.). Catal Today 8:175–199

    Article  CAS  Google Scholar 

  17. Mekhemer GAH, Halawy SA, Mohamed MA, Zaki MI (2004) Qualitative and quantitative assessments of acid and base sites exposed on polycrystalline MgO surfaces: thermogravimetric, calorimetric, and in-situ FTIR spectroscopic study combination. J Phys Chem B 108:13379–13386

    Article  CAS  Google Scholar 

  18. El-Nahas S, Abdelkader A, Halawy SA, Mohamed MA (2017) Nanocrystalline MgO samples (11.5 and 12.6 nm) derived from two different precursors: characterization and catalytic activity. J Therm Anal Calorim 129:1313–1322

    Article  CAS  Google Scholar 

  19. Mayorga SG, Gaffney TR, Brzozowski JR, weigel SJ (2001) Eur Pat Appl, EP 1074297, A2 200110207

  20. Busca G, Finocchio E, Lorenzelli V, Ramis G, Baldi M (1999) IR studies on the activation of C–H hydrocarbon bonds on oxidation catalysts. Catal Today 49:453–465

    Article  CAS  Google Scholar 

  21. Tomska-Foralewska I, Przystajko W, Pietrowski M, Zielinski M, Wojciechowska M (2010) Effect of MgO content in the support of Au/MgF2–MgO catalysts on CO oxidation. Reac Kinet Mech Cat 100:111–121

    CAS  Google Scholar 

  22. Knözinger H (1998) In: Basset JM (ed) Surface organometallic chemistry: molecular approach to surface catalysis. Kluwer Academic Publishers, New York, pp 35–46

    Google Scholar 

  23. Zecchina A, Lofthouse MG, Stone FS (1975) Reflectance spectra of surface states in magnesium oxide and calcium oxide. J Chem Soc Faraday Trans 71:1476–1490

    Article  CAS  Google Scholar 

  24. Farragher AL (1979) Surface vacancies in close packed crystal structures. Adv Colloid Interface Sci 11:3–41

    Article  CAS  Google Scholar 

  25. Veldurthi S, Shin CH, Joo O-S, Jung KD (2012) Synthesis of mesoporous MgO single crystals without templates. Microporous Mesoporous Mater 152:31–36

    Article  CAS  Google Scholar 

  26. Zhao Z, Dai H, Du Y, Deng J, Zhang L, Shi F (2011) Solvo- or hydrothermal fabrication and excellent carbon dioxide adsorption behaviors of magnesium oxides with multiple morphologies and porous structures. Mater Chem Phys 128:348–356

    Article  CAS  Google Scholar 

  27. Yang Q, Sha J, Wang L, Wang J, Yang D (2006) MgO nanostructures synthesized by thermal evaporation. Mater Sci Eng C 26:1097–1101

    Article  CAS  Google Scholar 

  28. Yi X, Wenzhong W, Yitai Q, Li Y, Zhiwen C (1996) Deposition and microstructural characterization of MgO thin films by a spray pyrolysis method. Surf Coat Technol 82:291–293

    Article  CAS  Google Scholar 

  29. Mastuli MS, Kamarulzaman N, Nawawi MA, Mahat AM, Rusdi R, Kamarudin N (2014) Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents. Nanoscale Res Lett 9:134

    Article  Google Scholar 

  30. Li H, Li M, Wang X, Wu X, Liu F, Yang B (2013) Synthesis and optical properties of single-crystal MgO nanobelts. Mater Lett 102–103:80–82

    Google Scholar 

  31. Kumari L, Li WZ, Vannoy CH, Leblanc RM, Wang DZ (2009) Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceram Int 35:3355–3364

    Article  CAS  Google Scholar 

  32. Ouraipryvan P, Sreethawong T, Chavadej S (2009) Synthesis of crystalline MgO nanoparticle with mesoporous-assembled structure via a surfactant-modified sol–gel process. Mater Lett 63:1862–1865

    Article  CAS  Google Scholar 

  33. Bumajdad A, Zaki MI, Eastoe J, Pasupulety L (2004) Microemulsion-based synthesis of CeO2 powders with high surface area and high-temperature stabilities. Langmuir 20:11223–11233

    Article  CAS  Google Scholar 

  34. Eriksson S, Nylén U, Rojas S, Boutonnet M (2004) Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl Catal A 265:207–219

    Article  CAS  Google Scholar 

  35. Chen D-H, Wu S-H (2000) Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem Mater 12:1354–1360

    Article  CAS  Google Scholar 

  36. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128–130:5–15

    Article  Google Scholar 

  37. Svensson EE, Nassos S, Boutonnet M, Järås SG (2006) Microemulsion synthesis of MgO-supported LaMnO3 for catalytic combustion of methane. Catal Today 117:484–490

    Article  CAS  Google Scholar 

  38. Wu J, Yan H, Zhang X, Wei L, Liu X, Xu B (2008) Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions. J Colloid Interface Sci 324:167–171

    Article  CAS  Google Scholar 

  39. Ganguly A, Trinh P, Ramanujachary KV, Ahmad T, Mugweru A, Ganguli AK (2011) Reverse micellar based synthesis of ultrafine MgO nanoparticles (8–10 nm): characterization and catalytic properties. J Colloid Interface Sci 353:137–142

    Article  CAS  Google Scholar 

  40. Li S, Zhou B, Ren B, Xing L, Tan L, Dong L, Li J (2016) Preparation of MgO nanomaterials by microemulsion-based oil/water interface precipitation. Mater Lett 171:204–207

    Article  CAS  Google Scholar 

  41. Zana R (1980) Ionization of cationic micelles: effect of the detergent structure. J Colloid Interface Sci 78:330–337

    Article  CAS  Google Scholar 

  42. International Center for Diffraction Data, 12 Camp us Boulevard, Newten square, PA 19073-3273.

  43. Snyder RL (1999) In: Lifshin E (ed) X-ray characterization of materials. Wiley, Weinheim, pp 4–103

    Google Scholar 

  44. Schwab G-M, Karatzas A (1944) Katalytische Wirkung Intermetallischer Phasen und Ihrer Mischungen Zeitschrift für Elektrochemie und angewandte physikalische. Chemie 50:242–249

    CAS  Google Scholar 

  45. Busca G, Lorenzelli V (1982) Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater Chem 7:89–126

    Article  CAS  Google Scholar 

  46. Kuijpers EGM, Kock AJHM, Nieuwesteeg MWCMA, Geus JW (1985) Disproportionation of CO on NiSiO2: kinetics and nature of the deposited carbon. J Catal 95:13–20

    Article  CAS  Google Scholar 

  47. Gawande MB et al (2011) Synthesis and characterization of versatile MgO-ZrO2 mixed metal oxide nanoparticles and their applications. Catal SciTech 1:1653–1664

    CAS  Google Scholar 

  48. Yu X, Jiang B, Yang H, Yang Q, Xia X, Pan F (2015) High temperature oxidation behavior of Mg-Y-Sn, Mg-Y, Mg-Sn alloys and its effect on corrosion property. Appl Surf Sci 353:1013–1022

    Article  CAS  Google Scholar 

  49. Chen G et al (2015) Facile and mild strategy to construct mesoporous CeO2–CuO nanorods with enhanced catalytic activity toward CO oxidation. ACS Appl Mater Interfaces 7:23538–23544

    Article  CAS  Google Scholar 

  50. Lecloux AJ (1981) Texture of catalysts. Catal Sci Eng 2:171–229

    CAS  Google Scholar 

  51. Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San Diego

    Google Scholar 

  52. Gregg SJ,. Sing KSW (1982) Adsorption, Surface Area, and Porosity; 2nd ed.; Academic Press: London

  53. Selvamani T, Sinhamahapatra A, Bhattacharjya D, Mukhopadhyay I (2011) Rectangular MgO microsheets with strong catalytic activity. Mater Chem Phys 129:853–861

    Article  CAS  Google Scholar 

  54. Sinthika S, Vala ST, Kawazoe Y, Thapa R (2016) CO oxidation prefers the Eley-Rideal or Langmuir-Hinshelwood pathway: monolayer vs thin film of SiC. ACS Appl Mater Interfaces 8:5290–5299

    Article  CAS  Google Scholar 

  55. Saracco G, Scibilia G, Iannibello A, Baldi G (1996) Methane combustion on Mg-doped LaCrO3 perovskite catalysts. Appl Catal B 8:229–244

    Article  CAS  Google Scholar 

  56. Kung HH (1989) Transition metal oxides: surface chemistry and catalysis, studies in surface science and catalysis, vol 45. Elsevier, Amsterdam

    Google Scholar 

  57. Zedan A, Allam N, AlQaradawi S (2017) A study of low-temperature CO oxidation over mesoporous CuO-TiO2 nanotube catalysts. Catalysts 7:129

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Kuwait University Research Administration, College of Graduate Studies, RSPU Facilities (GS 01/01, GS 03/01, GS 01/05, GS 02/08 and GE 03/08), and the Nanoscopy Science Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bumajdad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bumajdad, A., Al-Ghareeb, S., Madkour, M. et al. Synthesis of MgO nanocatalyst in water-in-oil microemulsion for CO oxidation. Reac Kinet Mech Cat 122, 1213–1229 (2017). https://doi.org/10.1007/s11144-017-1281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1281-0

Keywords

Navigation