Skip to main content
Log in

Nanocrystalline MgO samples (11.5 and 12.6 nm) derived from two different precursors: characterization and catalytic activity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two MgO samples were prepared from home-made magnesium galactarate hemihydrate (MgC6H8O8·0.5H2O) and magnesium oxalate dihydrate (MgC2O4·2H2O) by calcination at 500 °C for 3 h in air. Thermal decompositions of both Mg salts were studied by TG and DSC analyses. Selected samples were chosen during thermal decomposition of galactarate salt to examine its decomposition steps by FTIR, as well as the original salt. The resulted oxides at 500 °C from both precursors were characterized by FTIR and XRD analyses as pure periclase MgO nanoparticles, between 11.5 and 12.6 nm. SEM micrographs of oxides showed substantial differences between the particles’ shapes. It was stick-like particles in case of MgO-Gala and aggregates of small cubic crystals in case of MgO-Oxal. Results of surface area and porosity measurements showed, also, great differences in their surface characterizations. The decomposition of isopropyl alcohol, as a test reaction, was applied to compare the catalytic activity of such samples with the distribution of both acidic and basic sites over their surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen J, Tian S, Lu J, Xiong Y. Catalytic performance of MgO with different exposed crystal facets towards the ozonation of 4-chlorophenol. Appl Catal A Gen. 2015;506:118–25.

    Article  CAS  Google Scholar 

  2. Schwach P, Hamilton N, Eichelbaum M, Thum L, Lunkenbein T, Schlögl R, Trunschke A. Structure sensitivity of the oxidative activation of methane over MgO model catalysts: II. Nature of active sites and reaction mechanism. J Catal. 2015;329:574–87.

    Article  CAS  Google Scholar 

  3. Mohr S, Doepper T, Xu T, Tariq Q, Lytken O, Laurin M, Steinrueck H-P, Goerling A, Libuda J. Organic linkers on oxide surfaces: adsorption and chemical bonding of phthalic anhydride on MgO (100). Surf Sci. 2016;646:90–100.

    Article  CAS  Google Scholar 

  4. Montero JM, Isaacs MA, Lee AF, Lynam JM, Wilson K. The surface chemistry of nanocrystalline MgO catalysts for FAME production: an in situ XPS study of H2O, CH3OH and CH3OAc adsorption. Surf Sci. 2016;646:170–8.

    Article  CAS  Google Scholar 

  5. Bartley JK, Xu C, Lloyd R, Enache DI, Knight DW, Hutchings GJ. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Appl Catal B Environ. 2012;128:31–8.

    Article  CAS  Google Scholar 

  6. Karmakar B, Nayak A, Banerji J. A clean and expedient synthesis of spirooxindoles in aqueous media catalyzed over nanocrystalline MgO. Tetrahedron Lett. 2012;53:5004–7.

    Article  CAS  Google Scholar 

  7. Li S, Zhou B, Ren B, Xing L, Tan L, Dong L, Li J. Preparation of MgO nanomaterials by microemulsion-based oil/water interface precipitation. Mater Lett. 2016;171:204–7.

    Article  CAS  Google Scholar 

  8. Soltani RDC, Safari M. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: response surface methodological optimization. Ultrason Sonochem. 2016;32:181–90.

    Article  Google Scholar 

  9. Vu A-T, Ho K, Jin S, Lee C-H. Double sodium salt-promoted mesoporous MgO sorbent with high CO2 sorption capacity at intermediate temperatures under dry and wet conditions. Chem Eng J. 2016;291:161–73.

    Article  CAS  Google Scholar 

  10. Chowdhury AH, Chowdhury IH, Naskar MK. A facile synthesis of grainy rod-like porous MgO. Mater Lett. 2015;158:190–3.

    Article  Google Scholar 

  11. Soltani RDC, Safari M. Sonocatalyzed decolorization of synthetic textile wastewater using sonochemically synthesized MgO nanostructures. Ultrason Sonochem. 2016;30:123–31.

    Article  Google Scholar 

  12. Lide DR. CRC handbook of chemistry and physics. 85th ed. New York: CRC Press; 2004.

    Google Scholar 

  13. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  14. Halawy SA. Unpromoted and K2O-promoted cobalt molybdate as catalysts for the decomposition of acetic acid. Chem Monthly. 2003;134:371–80.

    Article  CAS  Google Scholar 

  15. Mekhemer GAH, Halawy SA, Mohamed MA, Zaki MI. Qualitative and quantitative assessments of acid and base sites exposed on polycrystalline MgO surfaces: thermogravimetric, calorimetric, and in situ FTIR spectroscopic study combination. J Phys Chem B. 2004;108:13379–86.

    Article  CAS  Google Scholar 

  16. Conesa TD, Campelo JM, Luna D, Marinas JM, Romero AA. Development of mesoporous Al,B-MCM-41 materials. Effect of reaction temperature on the catalytic performance of Al,B-MCM-41 materials for the cyclohexanone oxime rearrangement. Appl Catal B Environ. 2007;70:567–76.

    Article  CAS  Google Scholar 

  17. Osman AI, Abu-Dahrieh JK, Rooney DW, Halawy SA, Mohamed MA, Abdelkader A. Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether. Appl Catal B Environ. 2012;127:307–15.

    Article  CAS  Google Scholar 

  18. Mohamed MA, Galwey AK, Halawy SA. The activities of some metal oxides in promoting the thermal decomposition of potassium oxalate. Thermochim Acta. 2002;387:63–74.

    Article  CAS  Google Scholar 

  19. Tian W, Yang L-M, Xu Y-Z, Weng S-F, Wu J-G. Sugar interaction with metal ions. FT-IR study on the structure of crystalline galactaric acid and its K+, NH4 +, Ca2+, Ba2+, and La3+ complexes. Carbohydr Res. 2000;324:45–52.

    Article  CAS  Google Scholar 

  20. Pajtášová M, Ondrušová D, Jóna E, Mojumdar SC, L’alíková S, Bazyláková T, Gregor M. Spectral and thermal characteristics of copper(II) carboxylates with fatty acid chains and their benzothiazole adducts. J Thermal Anal Calorim. 2010;100:769–77.

    Article  Google Scholar 

  21. Saladini M, Menabue L, Ferrari E. Sugar complexes with metal2+ ions: thermodynamic parameters of associations of Ca2+, Mg2+ and Zn2+ with galactaric acid. Carbohydr Res. 2000;336:55–61.

    Article  Google Scholar 

  22. Selvakumar R, Geib SJ, Premkumar T, Govindarajann S. Synthesis, spectroscopic, thermal and XRD studies of aminoguanidinium copper and cadmium oxalates. J Therm Anal Calorim. 2016. doi:10.1007/s10973-015-5136-5.

    Google Scholar 

  23. Sheldrick B, Mackie W, Akrigg D. The structures of barium d-galactarate monohydrate and calcium d-galactarate tetrahydrate. Acta Crystallogr Sect C. 1989;45:191–4.

    Article  Google Scholar 

  24. Sheldrick B, Mackie W. Magnesium galactarate dihydrate. Acta Crystallogr Sect C. 1989;45:1072–3.

    Article  Google Scholar 

  25. Himeno M. Infrared spectra and normal vibrations of β-d-glucopyranose. Carbohydr Res. 1977;56:219–27.

    Article  Google Scholar 

  26. Tajmir-Riahi HA. Carbohydrate complexes with alkaline earth metal ions. Interaction of d-glucono-1,5-lactone with the Mg(II), Ca(II), Sr(II) and Ba(II) cations in the crystalline solid and aqueous solution. J Inorg Biochem. 1990;39:33–41.

    Article  CAS  Google Scholar 

  27. D’Antonio MC, Mancilla N, Wladimirsky A, Palacios D, González-Baró AC, Baran EJ. Vibrational spectra of magnesium oxalates. Vibrational Spectrosc. 2010;53:218–21.

    Article  Google Scholar 

  28. Rezaei M, Khajenoori M, Nematollahi B. Synthesis of high surface area nanocrystalline MgO by pluronic P123 triblock copolymer surfactant. Powder Technol. 2011;205:112–6.

    Article  CAS  Google Scholar 

  29. Freund H-J, Messmer RP. On the bonding and reactivity of CO2 on metal surfaces. Surf Sci. 1986;172:1–30.

    Article  CAS  Google Scholar 

  30. Selvakumar R, Geib SJ, Premkumar T, Govindarajan S. Synthesis, structure and thermal properties of a new 1D magnesium sulfoacetate coordination polymer. A precursor for MgO. J Therm Anal Calorim. 2015;121:943–9.

    Article  CAS  Google Scholar 

  31. Pei L-Z, Yinb W-Y, Wang J-F, Chen J, Fan C-G, Zhang Q-F. Low temperature synthesis of magnesium oxide and spinel powders by a sol–gel process. Mater Res. 2010;13:339–43.

    Article  CAS  Google Scholar 

  32. Platero EE, Mentruit MP, Areán CO, Zecchina A. FTIR studies on the acidity of sulfated zirconia prepared by thermolysis of zirconium sulfate. J Catal. 1996;162:268–76.

    Article  Google Scholar 

  33. Samantaray SK, Parida KM. SO4 2−/TiO2–SiO2 mixed oxide catalyst 2. Effect of the fluoride ion and calcination temperature on esterification of acetic acid. Appl Catal A Gen. 2001;211:175–87.

    Article  CAS  Google Scholar 

  34. Mohandes F, Davar F, Salavati-Niasari M. Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J Phys Chem Solids. 2010;71:1623–8.

    Article  CAS  Google Scholar 

  35. Cullity BD, Stock SR. Elements of X-ray Diffraction. 3rd ed. Michigan: Prentice Hall Publisher; 2001.

    Google Scholar 

  36. Sharma M, Jeevanandam P. Synthesis of magnesium oxide particles with stacks of plates morphology. J Alloys Compd. 2011;509:7881–5.

    Article  CAS  Google Scholar 

  37. Sing KSW, Rouquerol J. Charaterization of solid catalysts. In: Ertl G, Knözinger H, Weitkamp J, editors. Handbook of heterogeneous catalysis, vol 2. Weinheim: Wiley; 1997. p. 427–35.

  38. Ortiz-Islas E, López T, Navarrete J, Bokhimi X, Gómez R. High selectivity to isopropyl ether over sulfated titania in the isopropanol decomposition. J Mol Catal A Chem. 2005;228:345–50.

    Article  CAS  Google Scholar 

  39. Tanabe K, Misono M, Ono Y, Hattori H. New solid acids and bases: their catalytic properties, vol. 51. 1st ed. Amsterdam: Elsevier; 1989.

    Google Scholar 

  40. Hong E, Sim H-I, Shin C-H. The effect of Brønsted acidity of WO3/ZrO2 catalysts in dehydration reactions of C3 and C4 alcohols. Chem Eng J. 2016;292:156–62.

    Article  CAS  Google Scholar 

  41. Turek W, Haber J, Krowiak A. Dehydration of isopropyl alcohol used as an indicator of the type and strength of catalyst acid centres. Appl Surf Sci. 2005;252:823–7.

    Article  CAS  Google Scholar 

  42. Meshkani F, Rezaei M. Facile synthesis of nanocrystalline magnesium oxide with high surface area. Powder Technol. 2009;196:85–8.

    Article  CAS  Google Scholar 

  43. Mekhemer GAH, Halawy SA, Mohamed MA, Zaki MI. Ketonization of acetic acid vapour over polycrystalline magnesia: in situ Fourier transform infrared spectroscopy and kinetic studies. J Catal. 2005;230:109–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samih A. Halawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nahas, S., Abdelkader, A., Halawy, S.A. et al. Nanocrystalline MgO samples (11.5 and 12.6 nm) derived from two different precursors: characterization and catalytic activity. J Therm Anal Calorim 129, 1313–1322 (2017). https://doi.org/10.1007/s10973-017-6277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6277-5

Keywords

Navigation