Skip to main content
Log in

The regulating effects of cobalt addition on the catalytic properties of silica-supported Ni–Co bimetallic catalysts for CO2 methanation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Co-modified Ni/SiO2 samples were prepared by the wet co-impregnation method and characterized by X-ray photoelectron spectroscopy (XPS), hydrogen-temperature programmed reduction (H2-TPR), and X-ray diffraction (XRD) techniques. The obtained materials were used as the catalysts for the carbon dioxide methanation reaction. Methanation activities of Ni–Co/SiO2 catalysts were significantly dependent on Co/Ni molar ratios. The increase of Co loading led to the remarkable increase of CO2 conversions at temperature range from 250–350 °C. The methanation activities of bimetallic catalysts were also significantly dependent on Co/Ni molar ratios from XPS results. Based on the XRD characterization, a relationship between activities and NiCo species was observed. These NiCo species showed the typical TPR peaks at high temperatures. The higher the temperatures of these species over bimetallic catalyst were, the lower the catalytic activities were observed. In addition, the decrease of both NiCo(111) lattice constants and particle sizes corresponded the increase of catalytic activities in tested samples. A possible mechanism based on those NiCo species is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang G, Zuo Y, Han M, Wang J (2010) Reac Kinet Mech Cat 101:443–454

    Article  CAS  Google Scholar 

  2. Sahki R, Benlounes O, Cherifi O, Thouvenot R, Bettahar MM, Hocine S (2011) Reac Kinet Mech Cat 103:391–403

    Article  CAS  Google Scholar 

  3. Mierczynski P, Maniecki TP, Maniukiewicz W, Jozwiak WK (2011) Reac Kinet Mech Cat 104:139–148

    Article  CAS  Google Scholar 

  4. Gabrovska M, Edreva-Kardjieva R, Crisan D, Tzvetkov P, Shopska M, Shtereva I (2012) Reac Kinet Mech Cat 105:79–99

    Article  CAS  Google Scholar 

  5. Jeong H, Cho CH, Kim TH (2012) Reac Kinet Mech Cat 106:435–443

    Article  CAS  Google Scholar 

  6. Srisawad N, Chaitree W, Mekasuwandumrong O, Shotipruk A, Jongsomjit B, Panpranot J (2012) Reac Kinet Mech Cat 107:179–188

    Article  CAS  Google Scholar 

  7. Das T, Sengupta S, Deo G (2013) Reac Kinet Mech Cat 110:147–162

    Article  CAS  Google Scholar 

  8. Ahouari H, Soualah A, Le Valant A, Pinard L, Magnoux P, Pouilloux Y (2013) Reac Kinet Mech Cat 110:131–145

    Article  CAS  Google Scholar 

  9. Weatherbee GD, Bartholomew CH (1984) J Catal 87:352–362

    Article  CAS  Google Scholar 

  10. Fisher IA, Bell AT (1996) J Catal 162:54–65

    Article  CAS  Google Scholar 

  11. Aksoylu AE, Akin AN, Onsan ZI, Trimm DL (1996) Appl Catal A 145:185–193

    Article  CAS  Google Scholar 

  12. Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K (2006) Catal Commun 7:24–28

    Article  CAS  Google Scholar 

  13. Sehested J, Larsen KE, Kustov AL, Frey AM, Johannessen T, Bligaard T, Andersson MP, Norskov JK, Christensen CH (2007) Top Catal 45:9–13

    Article  CAS  Google Scholar 

  14. Hoekman SK, Broch A, Robbins C, Purcell R (2010) Int J Greenh Gas Control 4:44–50

    Article  CAS  Google Scholar 

  15. Ocampo F, Louis B, Kiwi-Minsker L, Roger AC (2011) Appl Catal A 392:36–44

    Article  CAS  Google Scholar 

  16. Sharma S, Hu ZP, Zhang P, McFarland EW, Metiu H (2011) J Catal 278:297–309

    Article  CAS  Google Scholar 

  17. Karelovic A, Ruiz P (2012) Appl Catal B 113:237–249

    Article  Google Scholar 

  18. Zhu Y, Zhang SR, Ye YC, Zhang XQ, Wang L, Zhu W, Cheng F, Tao F (2012) ACS Catal 2:2403–2408

    Article  CAS  Google Scholar 

  19. Liu J, Li CM, Wang F, He S, Chen H, Zhao YF, Wei M, Evans DG, Duan X (2013) Catal Sci Technol 3:2627–2633

    Article  CAS  Google Scholar 

  20. Cai W, Zhong Q, Zhao YX (2013) Catal Commun 39:30–34

    Article  CAS  Google Scholar 

  21. Zhu HW, Razzaq R, Li CS, Muhmmad Y, Zhang SJ (2013) AIChE J 59:2567–2576

    Article  CAS  Google Scholar 

  22. Dwyer DJ, Somorjai GA (1978) J Catal 52:291–301

    Article  CAS  Google Scholar 

  23. Jnioui A, Eddouasse M, Amariglio A, Ehrhardt JJ, Alnot M, Lambert J, Amariglio H (1987) J Catal 106:144–165

    Article  CAS  Google Scholar 

  24. Vesselli E, Schweicher J, Bundhoo A, Frennet A, Kruse N (2011) J Phys Chem C 115:1255–1260

    Article  Google Scholar 

  25. Iablokov V, Beaumont SK, Alayoglu S, Pushkarev VV, Specht C, Gao JH, Alivisatos AP, Kruse N, Somorjai GA (2012) Nano Lett 12:3091–3096

    Article  CAS  Google Scholar 

  26. Zheng F, Alayoglu S, Guo JH, Pushkarev VV, Li YM, Glans PA, Chen JL, Somorjai GA (2011) Nano Lett 11:847–853

    Google Scholar 

  27. Alayoglu S, Beaumont SK, Melaet G, Lndeman AE, Musselwhite N, Brooks CJ, Marcus MA, Guo JH, Liu A, Kruse N, Somorjai GA (2013) J Phys Chem C 117:21803–21809

    Article  CAS  Google Scholar 

  28. Melaet G, Ralston WT, Li CS, Alayoglu S, An K, Musselwhite N, Kalkan B, Somorjai GA (2014) J Am Chem Soc 136:2260–2263

    Article  CAS  Google Scholar 

  29. Ishihara T, Eguchi K, Arai H (1987) Appl Catal 30:225–238

    Article  CAS  Google Scholar 

  30. Ishihara T, Horiuchi N, Inoue T, Eguchi K, Takita Y, Arai H (1992) J Catal 136:232–241

    Article  CAS  Google Scholar 

  31. Das PC, Pradhan NC, Dalai AK, Bakshi NN (2004) Catal Lett 98:153–160

    Article  CAS  Google Scholar 

  32. Takanabe K, Nagaoka K, Nariai K, Aika K (2005) J Catal 232:268–275

    Article  CAS  Google Scholar 

  33. Zhang JG, Wang H, Dalai AK (2007) J Catal 249:300–310

    Article  CAS  Google Scholar 

  34. San-Jose-Alonso D, Juan-Juan J, Illan-Gomez MJ, Roman-Martinez MC (2009) Appl Catal A 371:54–59

    Article  CAS  Google Scholar 

  35. Xu JK, Zhou W, Li ZJ, Wang JH, Ma JX (2010) Int J Hydrogen Energy 35:13013–13020

    Article  CAS  Google Scholar 

  36. Fan MS, Abdullah AZ, Bhatia S (2011) Int J Hydrogen Energy 36:4875–4886

    Article  CAS  Google Scholar 

  37. Busca G, Costantino U, Montanari T, Ramis G, Resini C, Sisani M (2010) Int J Hydrogen Energy 35:5356–5366

    Article  CAS  Google Scholar 

  38. Luo NJ, Ouyang K, Cao FH, Xiao TC (2010) Biomass Bioenergy 2010(34):489–495

    Article  Google Scholar 

  39. Zhao M, Yang XS, Church TL, Harris AT (2011) Int J Hydrogen Energy 36:421–431

    Article  CAS  Google Scholar 

  40. Hu X, Lu GX (2009) Green Chem 11:724–732

    Article  CAS  Google Scholar 

  41. Li ZK, Hu X, Zhang LJ, Liu SM, Lu GX (2012) Appl Catal A 417:281–289

    Article  Google Scholar 

  42. Hu X, Zhang LJ, Lu GX (2012) Appl Catal A 427:49–57

    Article  Google Scholar 

  43. Moya SF, Martins RL, Schmal M (2011) Appl Catal A 396:159–169

    Article  CAS  Google Scholar 

  44. Janas J, Machej T, Gurgul J, Socha RP, Che M, Dzwigaj S (2007) Appl Catal B 75:239–248

    Article  CAS  Google Scholar 

  45. Zhang W, Tay HL, Lim SS, Wang YS, Zhong ZY, Xu R (2010) Appl Catal B 95:93–99

    Article  CAS  Google Scholar 

  46. Tomiyama S, Takahashi R, Sato S, Sodsawa T, Yoshida S (2003) Appl Catal A 241:349–361

    Article  CAS  Google Scholar 

  47. Pan YX, Liu CJ, Shi P (2008) J Power Sources 176:46–53

    Article  CAS  Google Scholar 

  48. Lv EJ, Zhang HK, Yang YN, Ren J (2012) J Mol Catal (China) 26:333–339

    CAS  Google Scholar 

  49. Viswanathan B, Gopalakrishnan R (1986) J Catal 99:342–348

    Article  CAS  Google Scholar 

  50. Zhou JW, Li YZ, Fan ZY, Shi JW, Shangguan EF (2014) J Mol Catal (China) 28:60–66

    CAS  Google Scholar 

  51. Wu MZ, Liu GQ, Li MT, Dai P, Ma YQ, Zhang LD (2010) J Alloys Compd 491:689–693

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the 973 Program and 863 Program of Department of Sciences and Technology China (Grant Nos. 2013CB632404 and 2012AA051501); by the National Natural Science Foundation of China (Grant Nos. 21373245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongxuan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Lu, G. The regulating effects of cobalt addition on the catalytic properties of silica-supported Ni–Co bimetallic catalysts for CO2 methanation. Reac Kinet Mech Cat 113, 101–113 (2014). https://doi.org/10.1007/s11144-014-0732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0732-0

Keywords

Navigation