Skip to main content
Log in

Ni–Al layered double hydroxides as catalyst precursors for CO2 removal by methanation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The effect of nickel content on the structure and activity of co-precipitated Ni–Al layered double hydroxides (LDHs) as catalyst precursors for CO2 removal by methanation was studied by variation of the Ni2+/Al3+ molar ratio (Ni2+/Al3+ = 3.0, 1.5 and 0.5), and of the reduction and reaction temperatures as well as of the space velocities. Powder X-ray diffraction (PXRD), H2 chemisorption, and temperature programmed reduction (TPR) techniques were applied for physicochemical characterization of the samples. It was specified that the nano-scaled dimensions of the as-synthesized samples also generate nano-metrical metallic nickel particles (PXRD). The existence of readily and hardly reducible Ni2+–O species in the studied samples (TPR), affects catalytic performance. The studied catalysts hydrogenate CO2 effectively to residual concentrations of the latter in the range of 0–10 ppm at reaction temperatures from 400 to 220 °C and space velocities between 22,000 and 3000 h−1. The variation of the CO2 methanation activity with the changes of space velocities depends on the nickel content, and reduction and reaction temperatures. After reduction at 400 and 450 °C, a sample of Ni2+/Al3+ = 3.0 has demonstrated the highest conversion degree at all the reaction temperatures and space velocities, while a catalyst of Ni2+/Al3+ = 0.5 dominated in the methanation activity after reduction within 530–600 °C. The Ni2+/Al3+ = 1.5 catalyst data take intermediate position between Ni2+/Al3+ = 3.0 and Ni2+/Al3+ = 0.5 often closer to Ni2+/Al3+ = 3.0 ones. The studied Ni–Al LDH systems are found to be promising catalyst precursors for fine CO2 removal from hydrogen-rich gas streams through the methanation reaction, depending on the technological regime of catalyst activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang W, Gong J (2011) Methanation of carbon dioxide: an overview. Front Chem Sci Eng 5:2–10

    Article  CAS  Google Scholar 

  2. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32

    Article  CAS  Google Scholar 

  3. Wang W, Wang Sh, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide: critical review. Chem Soc Rev 40:3703–3727

    Article  CAS  Google Scholar 

  4. Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge: a review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    Article  CAS  Google Scholar 

  5. Aresta M (1998) Perspectives of carbon dioxide utilization in the synthesis of chemicals, coupling chemistry with biotechnology. In: Inui T, Anpo M, Izui K, Yanagida S, Yamaguchi T (eds) Studies in surface science and catalysis, vol 114. Elsevier, Amsterdam, pp 65–76

  6. Aresta M, Dibenedetto A (2002) Carbon dioxide as building block for the synthesis of organic carbonates. Behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins. J Mol Catal A 182–183:399–409

    Article  Google Scholar 

  7. Sakakura T, Kohno K (2009) The synthesis of organic carbonates from carbon dioxide. Chem Commun 11:1312–1330

    Article  CAS  Google Scholar 

  8. Wilcox EM, Roberts GW, Spivey JJ (2003) Direct catalytic formation of acetic acid from CO2 and methane. Catal Today 88:83–90

    Article  CAS  Google Scholar 

  9. Aresta M, Dibenedetto A, Pastore C (2004) Group 5 (V, Nb and Ta) element-alkoxides as catalysts in the transesterification of ethylene-carbonate with methanol, ethanol and allyl alcohol. In: Park S-E, Chang J-S, Lee K-W (eds) Studies in surface science and catalysis, vol 153. Elsevier, Amsterdam, pp 221–226

  10. Centi G, Perathoner S (2004) Heterogeneous catalytic reactions with CO2: status and perspectives. In: Park S-E, Chang J-S, Lee K-W (eds) Studies in surface science and catalysis, vol 153. Elsevier, Amsterdam, pp 1–8

  11. Jessop PG, Joó F, Tai Ch-Ch (2004) Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord Chem Rev 248:2425–2442

    Article  CAS  Google Scholar 

  12. Omae I (2006) Aspects of carbon dioxide utilization. Catal Today 115:33–52

    Article  CAS  Google Scholar 

  13. Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205

    Article  CAS  Google Scholar 

  14. Arakawa H (1998) Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2. In: Inui T, Anpo M, Izui K, Yanagida S, Yamaguchi T (eds) Studies in surface science and catalysis, vol 114. Elsevier, Amsterdam, pp 19–30

  15. Aresta M, Dibenedetto A (2004) The contribution of the utilization option to reducing the CO2 atmospheric loading: research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. Catal Today 98:455–462

    Article  CAS  Google Scholar 

  16. Rostrup-Nielsen JR (1994) Aspects of CO2 reforming of methane. In: Curry-Hyde HE, Howe RF (eds) Studies in surface science and catalysis, vol 81. Elsevier, Amsterdam, pp 25–41

  17. Hu YH, Ruckenstein E (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal 48:297–345

    Article  CAS  Google Scholar 

  18. Treacy D, Ross JRH (2004) The potential of the CO2 reforming of CH4 as a method of CO2 mitigation. A thermodynamic study. Prepr Pap-A. Chem Soc, Div Fuel Chem 49:126–127

    CAS  Google Scholar 

  19. Ross JRH (2005) Natural gas reforming and CO2 mitigation. Catal Today 100:151–158

    Article  CAS  Google Scholar 

  20. Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10:207–234

    Article  CAS  Google Scholar 

  21. Tomasko DL, Li HB, Liu DH, Han XM, Wingert MJ, Lee LJ, Koelling KW (2003) A review of CO2 applications in the processing of polymers. Ind Eng Chem Res 42:6431–6456

    Article  CAS  Google Scholar 

  22. Xu XD, Moulijn JA (1996) Review-Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels 10:305–325

    Article  Google Scholar 

  23. Armor JN (2000) Catalytic fixation of CO2, CO2 purity, energy, and the environment. Am Chem Soc Div Petrol Chem Prepr 45:141–142

    CAS  Google Scholar 

  24. Spivey JJ (2005) Catalysis in the development of clean energy technologies. Catal Today 100:171–180

    Article  CAS  Google Scholar 

  25. Yang J-I, Kim J-N (2006) Hydrotalcites for adsorption of CO2 at high temperature. Korean J Chem Eng 23:77–80

    Article  CAS  Google Scholar 

  26. Xavier KO, Sreekala R, Rashid KKA, Yusuff KKM, Sen B (1999) Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation. Catal Today 49:17–21

    Article  CAS  Google Scholar 

  27. Xu G, Chen X, Zhang Z-G (2006) Temperature-staged methanation: an alternative method to purify hydrogen-rich fuel gas for PEFC. Chem Eng J 121:97–107

    Article  CAS  Google Scholar 

  28. Mills AG, Steffgen FW (1974) Catalytic methanation. Catal Rev Sci Eng 8:159–210

    Article  Google Scholar 

  29. Bridger GW, Woodward C (1976) Production of methanation catalysts. In: Delmon B, Jacobs PA, Poncelet G (eds) Studies in surface science and catalysis, vol 1. Elsevier, Amsterdam, pp 331–341

  30. Vannice MA (1976) The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen. Catal Rev Sci Eng 14:153–191

    Article  CAS  Google Scholar 

  31. Watson GH (1980) Methanation catalysts. Report number ICTIS/TR 09. International Energy Agency Coal Research, London, England, pp 1–56

    Google Scholar 

  32. de Korte PHM, Doesburg EBM, de Winter CPJ, van Reijen LL (1985) Characterization of the interaction between nickel oxide and aluminum oxide in coprecipitated catalysts. Solid State Ionics 16:73–80

    Article  Google Scholar 

  33. Bartholomew CH, Farrauto RJ (1976) Chemistry of nickel–alumina catalysts. J Catal 45:41–53

    Article  CAS  Google Scholar 

  34. McArthur DP (1980) Thermally stable nickel–alumina catalysts useful for methanation and other reactions. US Patent 4,191,664

  35. Hayes RE, Thomas WJ, Hayes KE (1985) A Study of the nickel-catalyzed methanation reaction. J Catal 92:312–326

    Article  CAS  Google Scholar 

  36. Kester KB, Zagli E, Falconer JL (1986) Methanation of carbon monoxide and carbon dioxide on Ni/A1 catalysts: effects of nickel loading. Appl Catal 22:311–319

    Article  CAS  Google Scholar 

  37. Bish D, Brindley G (1977) A reinvestigation of takovite, a nickel–aluminium hydroxycarbonate of the pyroaurite group. Am Mineral 62:458–464

    CAS  Google Scholar 

  38. Allmann R (1970) Doppelschichtstructuren mit Brucitählichen Schichtionen [Me(II)1−x Me(III) x (OH)2]x+. Chimia 24:99–108

    CAS  Google Scholar 

  39. Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  40. Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41:53–71

    Article  CAS  Google Scholar 

  41. Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14:161–198

    Article  CAS  Google Scholar 

  42. Parker L, Milestone N, Newman R (1995) The use of hydrotalcite as an anion absorbent. Ind Eng Chem Res 34:1196–1202

    Article  CAS  Google Scholar 

  43. Li F, Duan X (2006) Layered double hydroxides. In: Mingos DMP (series ed) Structure and bonding, vol 119. Springer, Heidelberg, pp 193–223

  44. Kannan S (2006) Catalytic applications of hydrotalcite-like materials and their derived forms. Catal Surv Jpn 10:117–137

    Article  CAS  Google Scholar 

  45. Forano C, Hibino T, Leroux F, Taviot-Guého C (2006) Layered double hydroxides. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments in clay science, vol 1. Elsevier, Amsterdam, pp 1021–1095

  46. Centi G, Perathoner S (2008) Catalysis by layered materials: a review. Micropor Mesopor Mater 107:3–15

    Article  CAS  Google Scholar 

  47. Palmer S, Frost R, Nguyen T (2009) Review—Hydrotalcites and their role in coordination of anions in Bayer liquors: anion binding in layered double hydroxides. Coord Chem Rev 253:250–267

    Article  CAS  Google Scholar 

  48. Jinesh CM, Antonyraj CA, Kannan S (2010) Allylbenzene isomerisation over as-synthesized MgAl and NiAl containing LDHs: basicity–activity relationships. Appl Clay Sci 48:243–249

    Article  CAS  Google Scholar 

  49. Kishore D, Kannan S (2004) Double bond migration of eugenol to isoeugenol over as-synthesized hydrotalcites and their modified forms. Appl Catal A 270:227–235

    Article  CAS  Google Scholar 

  50. Costantino U, Curini M, Montanari F, Nocchetti M, Rosati O (2003) Hydrotalcite-like compounds as catalysts in liquid phase organic synthesis: I. Knoevenagel condensation promoted by [Ni0.73Al0.27(OH)2](CO3)0.135. J Mol Catal A 195:245–252

    Article  CAS  Google Scholar 

  51. Zhu Z, Qu L, Guo Y, Zeng Y, Sun W, Huang X (2010) Electrochemical detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic liquid electrode. Sens Actuators B 151:146–152

    Article  CAS  Google Scholar 

  52. Béléké AB, Mizuhata M (2010) Electrochemical properties of nickel–aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition. J Power Sources 195:7669–7676

    Article  CAS  Google Scholar 

  53. Kannan S (1998) Decomposition of nitrous oxide over the catalysts derived from hydrotalcite-like compounds. Appl Clay Sci 13:347–362

    Article  CAS  Google Scholar 

  54. Choudary BM, Kantam ML, Rahman A, Reddy CRV (2003) Selective reduction of aldehydes to alcohols by calcined Ni–Al hydrotalcite. J Mol Catal A 206:145–151

    Article  CAS  Google Scholar 

  55. Tret’yakov VF, Zakirova AG, Spozhakina AA, Gabrovska MV, Edreva-Kardjeva RM, Petrov LA (2010) Selective reduction of nitrogen oxides by hydrocarbons on hydrotalcite Co and Ni catalysts. Catal Industry 2:62–66

    Article  Google Scholar 

  56. Qi C, Amphlett JC, Peppley BA (2006) Product composition as a function of temperature over NiAl-layered double hydroxide derived catalysts in steam reforming of methanol. Appl Catal A 302:237–243

    Article  CAS  Google Scholar 

  57. Kruissink EC, Alzamora LE, Orr S, Doesburg EBM, van Reijen LL, Ross JRH, van Veen G (1979) The preparation and pretreatment of coprecipitated nickel-alumina catalysts for methanation at high temperatures. In: Delmon B, Jacobs PA, Poncelet G (eds) Studies in surface science and catalysis, vol 3. Elsevier, Amsterdam, pp 143–157

  58. van Veen G, Kruissink EC, Doesburg EBM, Ross JRH, van Reijen LL (1978) The effect of preparation conditions on the activity and stability of coprecipitated Ni/Al2O3 catalysts for the methanation of carbon monoxide. React Kinet Catal Lett 9:143–148

    Article  Google Scholar 

  59. Kruissink EC, van Reijen LL, Ross JRH (1981) Coprecipitated nickel–alumina catalysts for methanation at high temperature. Part 1. Chemical composition and structure of the precipitates. J Chem Soc Trans I 77:649–663

    Article  CAS  Google Scholar 

  60. Alzamora LE, Ross JRH, Kruissink EC, van Reijen LL (1981) Coprecipitated nickel alumina catalysts for methanation at high temperature. Part 2. Variation of total and metallic areas as a function of sample composition and method of pretreatment. J Chem Soc Faraday Trans I 77:665–681

    Article  CAS  Google Scholar 

  61. Kruissink EC, Pelt H, Ross JRH, van Reijen LL (1981) The effect of sodium on the methanation activity of nickel/alumina coprecipitated catalysts. Appl Catal 1:23–29

    Article  CAS  Google Scholar 

  62. Aksoylu AE, Akin AN, Önsan Zİ, Trimm DL (1996) Structure/activity relationships in coprecipitated nickel-alumina catalysts using CO2 adsorption and methanation. Appl Catal A 145:185–193

    Article  CAS  Google Scholar 

  63. Aksoylu AE, Akin AN, Sunol SG, Önsan Zİ (1996) The effect of metal loading on the adsorption parameters of carbon dioxide on coprecipitated Nickel–Alumina catalysts. Tr J Chemistry 20:88–94

    CAS  Google Scholar 

  64. Aksoylu AE, Önsan Zİ (1997) Hydrogenation of carbon oxides using coprecipitated and impregnated Ni/A12O3 catalysts. Appl Catal A 164:1–11

    Article  Google Scholar 

  65. Monti D, Baiker A (1983) Temperature-programmed reduction. Parametric sensitivity and estimation of kinetic parameters. J Catal 83:323–335

    Article  CAS  Google Scholar 

  66. Anderson J (1975) Structure of metallic catalysts. Academic Press, New York, p 300

    Google Scholar 

  67. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  68. Kannan S, Narayanan A, Swamy CS (1996) Effect of composition on the physicochemical properties of nickel aluminium hydrotalcites. J Mater Sci 31:2353–2360

    Article  CAS  Google Scholar 

  69. Kovanda F, Rojka T, Bezdička P, Jirátová K, Obalová L, Pacultová K, Bastl Z, Grygar T (2009) Effect of hydrothermal treatment on properties of Ni–Al layered double hydroxides and related mixed oxides. J Solid State Chem 182:27–36

    Article  CAS  Google Scholar 

  70. Benito P, Labajos FM, Rives V (2006) Microwave-treated layered double hydroxides containing Ni2+ and Al3+: the effect of added Zn2+. J Solid State Chem 179:3784–3797

    Article  CAS  Google Scholar 

  71. Musić S, Dragčević Đ, Popović S (1999) Hydrothermal crystallization of boehmite from freshly precipitated aluminium hydroxide. Mater Lett 40:269–274

    Article  Google Scholar 

  72. Lebedeva O, Tichit D, Coq B (1999) Influence of the compensating anions of Ni/Al and Ni/Mg/Al layered double hydroxides on their activation under oxidizing and reducing atmospheres. Appl Catal A 183:61–71

    Article  CAS  Google Scholar 

  73. Clause O, Rebours B, Merlen E, Trifirò F, Vaccari A (1992) Preparation and characterization of nickel–aluminum mixed oxides obtained by thermal decomposition of hydrotalcite-type precursors. J Catal 133:231–246

    Article  CAS  Google Scholar 

  74. Clause O, Goncalves Coelho M, Gazzano M, Matteuzzi D, Trifiro F, Vaccari A (1993) Synthesis and thermal reactivity of nickel-containing anionic clays. Appl Clay Sci 8:169–186

    Article  CAS  Google Scholar 

  75. Trifirò F, Vaccari A, Clause O (1994) Nature and properties of nickel-containing mixed oxides obtained from hydrotalcite-type anionic clays. Catal Today 21:185–195

    Article  Google Scholar 

  76. Rostrup-Nielsen JR, Pedersen K, Sehested J (2007) High temperature methanation sintering and structure sensitivity. Appl Catal A 330:134–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article has been realized in the frame of inter-academic collaboration between Institute of Catalysis, Bulgarian Academy of Sciences, and “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Gabrovska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrovska, M., Edreva-Kardjieva, R., Crişan, D. et al. Ni–Al layered double hydroxides as catalyst precursors for CO2 removal by methanation. Reac Kinet Mech Cat 105, 79–99 (2012). https://doi.org/10.1007/s11144-011-0378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0378-0

Keywords

Navigation