Skip to main content
Log in

Gyromultipliers of the Fifth Cyclotron Harmonic Based on High-Power Gyrotrons for Plasma Applications

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study theoretically the possibility of creating sources of terahertz radiation of high (up to several watts) power based on excitation of the fifth cyclotron harmonic in the frequency multiplication regime in high-power gyrotrons intended for plasma applications. It was previously shown that effective excitation of isolated (s = 4n + 1, n = 1, 2, 3, . . . ) cyclotron harmonics in gyrotrons is due to the specific property of the eigenmodes of cylindrical waveguides, according to which the conditions for simultaneous resonance of an electron beam with two TE modes having asymptotically multiple cutoff frequencies can be fulfilled. For the fifth cyclotron harmonic, this method was tested in experiments with a low-frequency kilowatt power level gyrotron. The use of gyrotrons for plasma applications will significantly increase the power and frequency of radiation based on the observed effect. To suppress spurious oscillation at the main cyclotron resonance, which occurs in the region of optimal magnetic fields for the multiplication effect, it is proposed to use frequency locking of the gyrotron by an external signal. Simulations performed in this work based on an averaged self-consistent gyrotron model shows the possibility of oscillation in the described radiation scheme with a power of several watts at a frequency of 1.25 THz with radiation at the fifth harmonic of the gyrofrequency in a recently developed sub-MW/0.25 THz gyrotron with TE19, 8 operating mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Brundermann, H.-W.Hubers, and M. F.Kimmitt, Terahertz Techniques. Springer Series in Optical Sciences, Springer, Berlin (2012).

  2. M.Tonouchi, Nat. Photonics, 1, 97–105 (2007). https://doi.org/https://doi.org/10.1038/nphoton.2007.3

    Article  ADS  Google Scholar 

  3. S. S. Dhillon, M. S. Vitiello, E.H. Linfield, et al., J. Phys. D. Appl. Phys., 50, No. 4, 043001 (2017). https://doi.org/https://doi.org/10.1088/1361-6463/50/4/043001

    Article  ADS  Google Scholar 

  4. V. A. Flyagin, A. V. Gaponov, M. I.Petelin, and V.K.Yulpatov, IEEE Trans. Microw. Theory Tech., 25, 514–521 (1977). https://doi.org/https://doi.org/10.1109/TMTT.1977.1129149

    Article  ADS  Google Scholar 

  5. https://www.jastec-inc.com/e_products_cryogen/

  6. S.P. Sabchevski, M.Yu. Glyavin, and G. S.Nusinovich, J. Infrared Millim. Terahertz Waves, 43, 1–47 (2022). https://doi.org/https://doi.org/10.1007/s10762-022-00845-7

    Article  Google Scholar 

  7. J. L.Hirshfield, Phys. Rev. A, 44, 6845–6853 (1991). https://doi.org/https://doi.org/10.1103/PhysRevA.44.6845

    Article  ADS  Google Scholar 

  8. H. Guo, S. H. Chen, V. L.Granatstein, et al., Phys. Rev. Lett., 79, 515–518 (1997). https://doi.org/10.1103/PhysRevLett.79.515

  9. C.-W.Baik, S.-G. Jeon, D. H. Kim, et al., IEEE Trans. Electron Devices, 52, No. 5, 829–838 (2005). https://doi.org/https://doi.org/10.1109/TED.2005.845861

    Article  ADS  Google Scholar 

  10. I.V. Bandurkin, V. L. Bratman, A.V. Savilov, et al., Phys. Plasmas, 16, 070701 (2009). https://doi.org/https://doi.org/10.1063/1.3179805

    Article  ADS  Google Scholar 

  11. M.Yu.Glyavin, I.V. Zotova, R. M.Rozental, et al., J. Infrared Millim. Terahertz Waves, 41, 1245–1251 (2020). https://doi.org/10.1007/s10762-020-00726-x

  12. V.Yu. Zaslavsky, I.V. Zheleznov, N. S.Ginzburg, et al., IEEE Trans. Electron. Devices, 68, No. 3, 1267–1270 (2021). https://doi.org/10.1109/TED.2020.3049108

  13. I.V. Bandurkin, V. L. Bratman, G. G. Denisov, et al., Terahertz Sci. Technol., 1, No. 3, 169–189 (2008). https://doi.org/10.11906/TST.169-189.2008.09.15

  14. M.Yu.Glyavin, A.N.Kuftin, M. V. Morozkin, et al., IEEE Electron. Device Lett., 42, No. 11, 1666–1669 (2021). https://doi.org/https://doi.org/10.1109/LED.2021.3113022

    Article  ADS  Google Scholar 

  15. S. K. Jawla, R. G. Griffin, I. A. Mastovsky, et al., IEEE Trans. Electron Devices, 67, No. 1, 328–334 (2020). https://doi.org/https://doi.org/10.1109/ted.2019.2953658

    Article  ADS  Google Scholar 

  16. I. I.Antakov, V. E. Zapevalov, T. B.Pankratova, and Sh. E.Tsimring, The Gyrotron [in Russian], Inst. Appl. Phys., USSR Acad. Sci., Gorky (1981), pp. 192–215.

  17. G. G. Denisov, I. V. Zotova, A.M.Malkin, et al., Phys. Rev. E, 106, L023203 (2022). https://doi.org/10.1103/PhysRevE.106.L023203

  18. G. G. Denisov, M.Yu.Glyavin, A. I.Tsvetkov, et al., IEEE Trans. Electron Devices, 65, No. 9, 3963–3969 (2018). https://doi.org/10.1109/TED.2018.2859274

  19. Yu.K.Kalynov, V.N.Manuilov, A.Sh.Fiks, and N.A.Zavolskiy, Appl. Phys. Lett, 114, 213502 (2019). https://doi.org/https://doi.org/10.1063/1.5094875

    Article  ADS  Google Scholar 

  20. G. G. Denisov, M.Yu.Glyavin, A.P. Fokin, et al., Rev. Sci. Instrum., 89, No. 8, 084702 (2018). https://doi.org/https://doi.org/10.1063/1.5040242

    Article  ADS  Google Scholar 

  21. G. N.Watson, A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge University Press, Cambridge (1995).

    Google Scholar 

  22. V. S. Ergakov, M.A.Moiseev, and V. I. Khizhnyak, Radiotekh. Elektron., 23, No. 12, 2591–2599 (1978).

    ADS  Google Scholar 

  23. G. S.Nusinovich, Radiotekh. Elektron., 22, No. 10, 2214–2216 (1977).

    ADS  Google Scholar 

  24. G. G. Denisov, I. V. Zotova, I.V. Zheleznov, et al., IEEE Trans. Electron Devices, 69, No. 2, 754–758 (2022). https://doi.org/https://doi.org/10.1109/TED.2021.3134187

    Article  ADS  Google Scholar 

  25. V. L. Bakunin, G. G. Denisov, and Y.V.Novozhilova, IEEE Electron Device Lett., 41, No. 5, 777–780 (2022). https://doi.org/https://doi.org/10.1109/LED.2020.2980218

    Article  ADS  Google Scholar 

  26. N. S. Ginzburg, A. S. Sergeev, and I.V. Zotova, Phys. Plasmas, 22, No. 3, 033101 (2015). https://doi.org/https://doi.org/10.1063/1.4913672

    Article  ADS  Google Scholar 

  27. A.V. Chirkov, G. G. Denisov, and A.N.Kuftin, Appl. Phys. Lett., 106, No. 26, 263501 (2015). https://doi.org/https://doi.org/10.1063/1.4923269

    Article  ADS  Google Scholar 

  28. E. Semenov, V. Zapevalov, and V. Zuev, in: 20th Int. Conf. Mathematical Modeling and Supercomputer Technologies (MMST 2020), 23–27 November 2020, Nizhny Novgorod, Russia, pp. 49–62. https://doi.org/10.1007/978-3-030-78759-2_4

  29. I.V. Bandurkin, A. E. Fedotov, M.Yu.Glyavin, et al., IEEE Trans. Electron Devices, 67, No. 10, 4432–4436 (2020). https://doi.org/10.1109/TED.2020.3012524

  30. A. N. Leontiev, R.M.Rozental, N. S. Ginzburg, et al., Bull. Russ. Acad. Sci. Phys., 87, No. 1, 46–49 (2023). https://doi.org/https://doi.org/10.3103/S1062873822700113

    Article  Google Scholar 

  31. M.Yu.Glyavin, A. L.Goldenberg, A. N. Kuftin, et al., IEEE Trans. Plasma Sci., 27, No. 2, 474–483 (1999). https://doi.org/https://doi.org/10.1109/27.772276

    Article  ADS  Google Scholar 

  32. P. V. Krivosheev, V.K. Lygin, V.N.Manuilov, and Sh. E.Tsimring, J. Infrared Millim. Terahertz Waves, 22, 1,119–1145 (2021). https://doi.org/https://doi.org/10.1023/A:1015006230396

    Article  Google Scholar 

  33. O.Dumbrajs, T. Saito, Y.Tatematsu, and Y.Yamaguchi, Phys. Plasmas, 23, 093109 (2016). https://doi.org/https://doi.org/10.1063/1.4962575

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zheleznov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 527–537, July–August 2023. Russian https://doi.org/10.52452/00213462_2023_66_07_527

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glyavin, M.Y., Denisov, G.G., Zheleznov, I.V. et al. Gyromultipliers of the Fifth Cyclotron Harmonic Based on High-Power Gyrotrons for Plasma Applications. Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10309-8

Navigation