Skip to main content
Log in

The Progress in the Studies of Mode Interaction in Gyrotrons

  • Invited Review Article
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The studies on mode interaction in gyrotrons had always been an active field of research due to their theoretical and practical importance for better understanding of the underlying physical principles and the development and optimization of various gyro-devices. However, lately, the problems that stem from the mode interaction have become more pronounced and severe due to the recently demonstrated advancement of gyrotrons towards higher (terahertz) frequencies at which, for keeping the same power level, the gyrotrons should operate in higher order modes. So the mode spectrum of the gyrotron cavity is significantly denser, and, hence, the mode competition is inevitable. In this overview, we present both the evolution and the progress of these investigations that assist the further development of high-performance sub-THz and THz gyrotrons for numerous novel and emerging applications in the broad fields of science and technologies. The targeted readership of this paper includes not only the experts in gyrotron development but rather a wider community of specialists working on other vacuum microwave devices seeking a synergy between different research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A.V. Gaponov, M.I. Petelin and V.K. Yulpatov, “The induced radiation of excited classical oscillators and its use in high-frequency electronics,” Radiophys. Quantum Electron., vol. 10 (1967) 794-813. https://doi.org/10.1007/BF01031607.

    Article  Google Scholar 

  2. V.A. Flyagin, A.V. Gaponov, M.I. Petelin, V.K. Yulpatov, "The Gyrotron," in IEEE Transactions on Microwave Theory and Techniques, vol. 25, no. 6 (1977) 514-521. https://doi.org/10.1109/TMTT.1977.1129149.

    Article  Google Scholar 

  3. M.A. Moiseev, G.S. Nusinovich, “Concerning the theory of multimode oscillations in a gyromonotron,” Radiophys. Quantum Electron., vol. 17, no. 11 (1974) 1305–1311. https://doi.org/10.1007/BF01042032.

    Article  Google Scholar 

  4. I.G. Zarnitsyna, G.S. Nusinovich, “Stability of single-mode self-excited oscillations in a gyromonotron”, Radiophys. Quantum Electron., vol. 17, no. 12 (1974) 1418-1424.

    Article  Google Scholar 

  5. G. S. Nusinovich, “Methods of voltage feeds for a pulsed gyromonotron which ensure high efficiency in a single-mode operation,” Elektron. Techn, Ser. 1, Elektron. SVCh, no. 3, (1974) 44-49. (in Russian)

    Google Scholar 

  6. G.S. Nusinovich, “Mode competition in a gyromonotron with a distorted axial symmetry“, Radio Eng. Electron. Phys., vol. 19 (1974) 152-155.

    Google Scholar 

  7. G.S. Nusinovich, “Mode interaction in gyrotrons,” International Journal of Electronics, vol. 51, no. 4 (1981) 457-474. https://doi.org/10.1080/00207218108901349.

    Article  Google Scholar 

  8. Dumbrajs O (1993) “Review of the theory of mode competition in gyrotrons,” (1993). Chapter 4 (pp. 87–121) in C.J. Edgcombe, Ed., “Gyrotron Oscillators: Their Principles and Practice, “Taylor and Francis ISBN:0748400192 9780748400195.

  9. G.S. Nusinovich, “Review of Mode Interaction in Gyrodevices,” (Review Paper), IEEE Trans. on Plasma Science, vol. 27, no. 2 (1999) 313-326. https://doi.org/10.1109/27.772257.

    Article  Google Scholar 

  10. Dialetis D, Chu KR (1983) “Mode competition and stability analysis of the gyrotron oscillator.” In "Infrared and Millimeter Waves," vol. 7, Ed. K. J. Button, New York, Academic Press

  11. Borie E (1993) “Computations of radio-frequency behavior,” Chapter 3 (pp. 45–86) in C.J. Edgcombe, Ed., “Gyrotron Oscillators: Their Principles and Practice, “Taylor and Francis ISBN:0748400192 9780748400195

  12. Nusinovich, G.S., M.K.A. Thumm, M. Petelin, “The Gyrotron at 50: Historical Overview”. J. Infrared, Millimeter, and Terahertz Waves, 35, No. 4, 325-381 (2014) https://doi.org/10.1007/s10762-014-0050-7

    Article  Google Scholar 

  13. Liu P.K., Borie E., “Mode Competition and Self-Consistent Simulation of a Second Harmonic Gyrotron Oscillator,” International Journal of Infrared and Millimeter Waves 21, 855–882 (2000). https://doi.org/10.1023/A:1026437315884.

    Article  Google Scholar 

  14. Bratman V.L., Fedotov A.E., Idehara T., “Temporal Dynamics of Mode Interaction in Submillimeter-Wave Second-Harmonic Gyrotron,” International Journal of Infrared and Millimeter Waves, vol. 22 (2001) 1409–1420. https://doi.org/10.1023/A:1015030405179.

    Article  Google Scholar 

  15. Pao K.F., Chang T.H., Fan C.T., Chen S.H., Yu C.F., Chu K. R., “Dynamics of Mode Competition in the Gyrotron Backward-Wave Oscillator,” Phys. Rev. Lett., vol. 95, no. 18 (2005) 185101. https://doi.org/10.1103/PhysRevLett.95.185101.

    Article  Google Scholar 

  16. Sabchevski S., Saito T., Idehara T. et al., “Simulation of Mode Interaction in the Gyrotron FU CW I,” Int. J Infrared Milli Waves 28, 1079–1093 (2007). https://doi.org/10.1007/s10762-007-9294-9

    Article  Google Scholar 

  17. A.N. Vlasov, I.A. Chernyavskiy, T.M. Antonsen, G.S. Nusinovich, J.A. McDonald, B. Levush, "Numerical models of mode interaction in gyrotrons: Capabilities and limitations," 2008 IEEE International Vacuum Electronics Conference, 2008, pp. 58-59, https://doi.org/10.1109/IVELEC.2008.4556414.

    Article  Google Scholar 

  18. Dumbrajs, O., Idehara, T., “Hysteresis in Mode Competition in High Power 170 GHz Gyrotron for ITER,” Int. J Infrared Milli Waves, vol. 29 (2008) 232–239. https://doi.org/10.1007/s10762-008-9325-1.

    Article  Google Scholar 

  19. Q. Zhao, S. Yu, T. Zhang, "Theoretical Study of Mode Competition in Terahertz Gyrotron With Second Harmonic Oscillation," in IEEE Transactions on Plasma Science, vol. 43, no. 9 (2015) 3155-3160. https://doi.org/10.1109/TPS.2015.2464491.

    Article  Google Scholar 

  20. Q.Zhao, S.Yu, T.Zhang, X.Li, Y.Zhang, Y.Yang, Z.Wang. "Investigation on Mode Competition Between the Fundamental and Second-Harmonic Modes in the Complex Gyrotron," in IEEE Transactions on Plasma Science, vol. 44, no. 7 (2016) 1063-1068. https://doi.org/10.1109/TPS.2016.2577027.

    Article  Google Scholar 

  21. V.L. Bakunin, M.Yu. Glyavin, G.G. Denisov, Yu.V. Novozhilova, “Investigation of mode interaction for a gyrotron with dense mode spectrum, Journal of Electromagnetic Waves and Applications, vol. 35, no. 1 (2021) 19-26. https://doi.org/10.1080/09205071.2020.1821790.

    Article  Google Scholar 

  22. A.V. Gaponov, “Instability of a system of excited oscillators with respect to electromagnetic perturbations”, Soviet Physics JETP, vol. 12 (1961) 232-236.

    MathSciNet  Google Scholar 

  23. Nusinovich GS (2004) Introduction to the Physics of Gyrotrons, Johns Hopkins University Press, Baltimore, MD. ISBN 13: 9780801879210.

  24. S.N. Vlasov, G.M. Zhisllin, I.M. Orlova, M.I. Petelin, G.G. Rogacheva, “Irregular Waveguides as Open Resonators,” Radiophysics and Quantum Electronics, vol. 12 (1969) 972-978. https://doi.org/10.1007/BF01031202

    Article  Google Scholar 

  25. B. Van der Pol, “On oscillation hysteresis in a triode generator with two degrees of freedom”, Phil. Mag., S6, Vol. 43 (1922) 700-719.

    Google Scholar 

  26. Weinstein LA (1969) “General theory of resonant electron auto-oscillators,” in High-Power Electronics, Eds. P. L. Kapitsa and L A. Weinstein 6 84–129

  27. Lamb WE Jr (1965) Lectures in “Quantum Optics and Electronics”, Summer School of Theoretical Physics, Les Houches, University of Grenoble, 1964, Eds. C. DeWitt, A. Blandin, and C. Cohen-Tannoudji, New York, London, and Paris; Gordon and Breach

  28. G. S. Nusinovich, “Possible Cause of Multimode Oscillations in Electronic Masers,” Izv. VUZov, Radiofizika, vol. 24, no. 8, (1981) 1043-44 (in Russian).

    Google Scholar 

  29. S. Sabchevski, T. Idehara, M. Glyavin, I. Ogawa, S. Mitsudo,“Modelling and simulation of gyrotrons,” Vacuum, vol.77, no.4 (2005) 519-525.https://doi.org/10.1016/j.vacuum.2004.09.016.a

    Article  Google Scholar 

  30. Gashturi A.P., Nusinovich G.S., Zotova I.V., Semenov E.S., Sabchevski S.P., Glyavin M.Yu., “Nonlinear excitation of parasitic modes in harmonic gyrotrons,” Physics of Plasmas, vol. 27, n. 6 (2020) 063304. https://doi.org/10.1063/5.0010593.

    Article  Google Scholar 

  31. P. Sprangle and A. T. Drobot, “The linear and self-consistent nonlinear theory of the electron cyclotron maser instability”, (1977), IEEE-MTT, vol. 25, 528-544.

    Article  Google Scholar 

  32. K.E. Kreischer, R. J. Temkin, H. R. Fetterman, and W. J. Mulligan, “Multimode Oscillation and Mode Competition in High-Frequency Gyrotrons,” IEEE Trans. Microwave Theory Tech. MTT-32 (1984) 481. https://doi.org/10.1109/TMTT.1984.1132711.

    Article  Google Scholar 

  33. T. Idehara, Y. Shimizu, “Mode cooperation in submillimeter wave gyrotrons,” Phys. Plasmas, vol. 1 (1994) 3145. https://doi.org/10.1063/1.870466.

    Article  Google Scholar 

  34. K. Sakamoto, A. Kasugai, K. Takahashi, R. Minami, N. Kobayashi, and K. Kajiwara, “Achievement of robust high-efficiency 1 MW oscillation in the hard-self-excitation region by a 170 GHz continuous-wave gyrotron,” Nature Phys., vol. 3 (2007) 411–414. https://doi.org/10.1038/nphys599

    Article  Google Scholar 

  35. G.S. Nusinovich, O.V. Sinitsyn, "Interpretation of the nonlinear mode excitation in the ITER gyrotron", Phys. Plasmas, vol. 14 (2007) 113103. https://doi.org/10.1063/1.2802076.

    Article  Google Scholar 

  36. Saito T., Tatematsu Y., Yamaguchi Y., Ikeuchi S., Ogasawara S., Yamada N., Ikeda R., Ogawa I., Idehara T. “Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation,” Phys. Rev. Lett., vol. 109, no. 15 (2012) 155001. https://doi.org/10.1103/PhysRevLett.109.155001.

    Article  Google Scholar 

  37. Zapevalov V. E., Nusinovich G. S., “Theory of amplitude-phase mode interaction in electron masers,” Izv. VUZov Radiofizika, vol. 32, no.3 (1989) 347-355.

    Google Scholar 

  38. McCurdy A. H., Plewa J. S., “Mode interaction through amplitudes and phases in a two-mode gyrotron oscillator,” IEEE Trans. on Plasma Science, vol. 20, no. 3 (1992) 139-148. https://doi.org/10.1109/27.142813.

    Article  Google Scholar 

  39. T.Rzesnicki, B.Piosczyk, G.Dammertz, G.Gantenbein, M.Thumm, G.Michel (2007) “170 GHz, 2 MW coaxial cavity gyrotron — Investigation of the parasitic oscillations and efficiency of the RF-output system,” in Proc. IVEC, Kitakyushu, Japan, 45–46. https://doi.org/10.1109/IVELEC.2007.4283208

  40. K.Felch, M.Blank, P.Borchard, P.Cahalan, S.Cauffman, H.Jory (2008) “Recent test results on a 95 GHz, 2 MW gyrotron,” in Proc. 33rd Int. Conf. Infrared, Millimeter Terahertz Waves (IRMMW-THz), Pasadena, CA, 2008, Paper T2A2.1608. https://doi.org/10.1109/ICIMW.2008.4665499

  41. I. I. Antakov, I. G. Gachev, and E. V. Zasypkin, “Self-excitation of spurious oscillations in the drift region of gyrotron and their influence on gyrotron operation,” IEEE Trans. Plasma Sci., vol. 22, no. 5, pp. 878–882 (1994) https://doi.org/10.1109/27.338303

    Article  Google Scholar 

  42. G.Gantenbein, G.Dammertz, J.Flamm, S.Illy, S.Kern, G.Latsas, B.Piosczyk, T.Rzesnicki, A.Samartsev, A.Schlaich, M.Thumm, I,Tigelis. "Experimental Investigations and Analysis of Parasitic RF Oscillations in High-Power Gyrotrons," IEEE Transactions on Plasma Science, vol. 38, no. 6, pp. 1168-1177 (2010) https://doi.org/10.1109/TPS.2010.2041366

    Article  Google Scholar 

  43. Zapevalov, V.E., Moiseev, M.A. “Influence of Aftercavity Interaction on Gyrotron Efficiency”. Radiophysics and Quantum Electronics, 47, 520–527 (2004) https://doi.org/10.1023/B:RAQE.0000047243.18212.1d

    Article  Google Scholar 

  44. O. V. Sinitsyn and G. S. Nusinovich. “Analysis of aftercavity interaction in gyrotrons” Physics of Plasmas 16, 023101 (2009) https://doi.org/10.1063/1.3072978

    Article  Google Scholar 

  45. K. A. Avramidis, Z. C. Ioannidis, S. Kern, A. Samartsev, I. Gr. Pagonakis, I. G. Tigelis, J. Jelonnek “A comparative study on the modeling of dynamic after-cavity interaction in gyrotrons” Physics of Plasmas 22, 053106 (2015) https://doi.org/10.1063/1.4919924

    Article  Google Scholar 

  46. Tsimring SE (2006) “Electron beams and microwave vacuum electronics,” John Wiley & Sons. ISBN 0470053755, 9780470053751.

  47. Vlasov S.N., Zhislin G.M., Orlova I.M. et al., “Irregular waveguides as open resonators. Radiophys Quantum Electron, vol. 12 (1969) 972–978. https://doi.org/10.1007/BF01031202.

    Article  Google Scholar 

  48. Sabchevski S.P., Idehara T., “A Numerical Study on Finite-Bandwidth Resonances of High-Order Axial Modes (HOAM) in a Gyrotron Cavity,” Journal of Infrared, Millimeter and Terahertz Waves, vol. 36, no. 7 (2015) 628-653. https://doi.org/10.1007/s10762-015-0161-9.

    Article  Google Scholar 

  49. Y.K. Kalynov, I.V. Osharin, A.V. Savilov, "Stable Excitation of Higher Axial Modes in the Traveling-Wave-Tube Regime in Gyrotron Cavities With Additional Loss Elements," in IEEE Transactions on Electron Devices, vol. 68, no. 9 (2021) 4717-4722. https://doi.org/10.1109/TED.2021.3099765.

    Article  Google Scholar 

  50. M.K. Hornstein, V.S. Bajaj, R.G. Griffin, K.E. Kreischer, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, “Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator,” IEEE Transactions on Electron Devices, vol. 52, (2005) 798-807. https://doi.org/10.1109/TED.2005.845818.

    Article  Google Scholar 

  51. A.C. Torrezan, S.-T. Han, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, A.B. Barnes, R.G. Griffin, “Continuous—Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance,” IEEE Transactions on Plasma Science, vol. 38 (2010) 1150-1159. https://doi.org/10.1109/TPS.2010.2046617.

    Article  Google Scholar 

  52. R. Ikeda, Y. Yamaguchi, Y. Tatematsu, T. Idehara, I. Ogawa, T. Saito, Y. Matsuki, T. Fujiwara, “Broadband Continuously Frequency Tunable Gyrotron for 600MHz DNP-NMR Spectroscopy,” Plasma and Fusion Research: Rapid Communications, vol. 9 (2014) 1206058.

    Article  Google Scholar 

  53. Pan S., Du C.H., Qi X.B. et al., “Broadband terahertz-power extracting by using electron cyclotron maser,” Sci Rep, vol. 7 (2017) 7265.https://doi.org/10.1038/s41598-017-07545-6.

    Article  Google Scholar 

  54. X. Guan, W. Fu, D. Lu, Y. Yan, T. Yang and X. Yuan, "Experiment of a High-Power Sub-THz Gyrotron Operating in High-Order Axial Modes," in IEEE Transactions on Electron Devices, vol. 66, no. 6 (2019) 2752-2757. https://doi.org/10.1109/TED.2019.2910127.

    Article  Google Scholar 

  55. J. Huang et al., "Investigations on a 0.5-THz Ultrabroadband, Continuously Frequency-Tunable Gyrotron," in IEEE Transactions on Plasma Science, vol. 48, no. 2 (2020) 581-586. https://doi.org/10.1109/TPS.2020.2967337.

    Article  Google Scholar 

  56. Denisov G.G., Glyavin M.Y., Fedotov A.E. et al., “Theoretical and Experimental Investigations of Terahertz-Range Gyrotrons with Frequency and Spectrum Control,” J IR MM, and THZ Waves, vol. 41 (2020) 1131–1143. https://doi.org/10.1007/s10762-020-00672-8.

    Article  Google Scholar 

  57. I.I. Antakov, S.N. Vlasov, V.A. Gintsburg, L.I. Zagryadskaya, and L. V. Nikolaev, “Cyclotron resonance masers with mechanical tuning of frequency,” Elektron. Tekhn., ser. 1 , Elektronika SVCh, no. 8 (1975) 20-25.

    Google Scholar 

  58. Brand GF 1985 Tunable Gyrotrons. In: Infrared and Millimeter Waves, edited by. K. J. Button (Academic Press, New York, 1985). 14, 371–408

  59. Sabchevski S., Idehara T., “Resonant cavities for frequency tunable gyrotrons. Int. Journal IR and MM Waves, vol. 29, no. 1 (2008) 1-22. https://doi.org/10.1007/s10762-007-9297-6.

    Article  Google Scholar 

  60. W. Hu, M.A. Shapiro, K.E. Kreischer, R.J. Temkin,”140-GHz Gyrotron Experiments Based on a Confocal Cavity,” IEEE Trans. Plasma Sci., vol. 26 (1998) 366–374. https://doi.org/10.1109/27.700767.

    Google Scholar 

  61. Fliflet A.W., T.A. Hargreaves, R.P. Fischer, W.M. Manheimer, and P. Sprangle, “Review of quasi-optical gyrotron development,” Fusion Energy, vol. 9 (1990) 31-58. https://doi.org/10.1007/BF01057321.

    Article  Google Scholar 

  62. Nusinovich G. S., “Efficiency of the gyrotron with single and double confocal resonators”, Phys. Plasmas, vol. 25, no. 7 (2018) 073104. https://doi.org/10.1063/1.5042535.

    Article  Google Scholar 

  63. A.V. Gaponov, V.A. Flyagin, A.L. Goldenberg, G.S. Nusinovich, S.E. Tsimring, V.G. Usov, S.N. Vlasov, “Powerful millimetre-wave gyrotrons,” International Journal of Electronics Theoretical and Experimental, vol. 51, no. 4 (1981) 277-302. https://doi.org/10.1080/00207218108901338.

    Article  Google Scholar 

  64. Pavel'ev V.G., Tsimring S.E., Zapevalov V.E., “Coupled cavities with mode conversion in gyrotrons,” Int. J. Electron., vol. 63, no. 3 (1987) 379-391. https://doi.org/10.1080/00207218708939142.

    Article  Google Scholar 

  65. Y. Carmel, K.R. Chu, M. Read, A.K. Ganguly, D. Dialetis, R. Seeley, J.S. Levine, and V.L. Granatstein, “Realization of a stable and highly efficient gyrotron for controlled fusion research”, Phys. Rev. Lett, vol. 50 (1983) 112. https://doi.org/10.1103/PhysRevLett.50.112.

    Article  Google Scholar 

  66. D.Wagner, M.Thumm. “Improvement of the output mode purity of a complex-cavity resonator for a frequency-tunable sub-THz gyrotron” IEEE Trans. on Electron Devices, 68, 10, 5520-5526 (2021), https://doi.org/10.1109/TED.2021.3105955

    Article  Google Scholar 

  67. Vlasov S.N., L.I. Zagryadskaya, and I. M. Orlova, “Open coaxial resonators for gyrotrons”, Radio Eng. Electron. Physics, vol. 21, no. 7 (1976) 96-102.

    Google Scholar 

  68. G.S. Nusinovich, M.E. Read, O. Dumbrajs, K.E. Kreischer, "Theory of gyrotrons with coaxial resonators," in IEEE Trans. Electron Devices, vol. 41, no. 3 (1994) 433-438. https://doi.org/10.1109/16.275231.

    Article  Google Scholar 

  69. O. Dumbrajs, G. S. Nusinovich, "Coaxial gyrotrons: past, present, and future (review)," in IEEE Trans. Plasma Science, vol. 32, no. 3 (2004) 934-946. https://doi.org/10.1109/TPS.2004.829976.

    Article  Google Scholar 

  70. G. Gantenbein, K. Avramidis, S. Illy, Z.C. Ioannidis, J. Jin, J. Jelonnek, P. Kalaria, I.Gr. Pagonakis, S. Ruess, T. Ruess, T. Rzesnicki, M. Thumm, C. Wu, “New trends of gyrotron development at KIT: An overview on recent investigations,” Fusion Engineering and Design, vol. 146, Part A (2019) 341-344. https://doi.org/10.1016/j.fusengdes.2018.12.063.

    Article  Google Scholar 

  71. Ruess, S., et al. "KIT coaxial gyrotron development: from ITER toward DEMO." Int. J. Microwave Wireless Technologies, vol. 10, no. 5-6 (2018) 547-55. https://doi.org/10.1017/S1759078718000144.

    Article  Google Scholar 

  72. Bandurkin I.V., Glyavin M.Y., Zavolsky N.A., Kalynov Y.K., Osharin I.V., Savilov A.V., “Use of quasiregular resonator cavities with short phase correctors in gyrotrons operated at higher cyclotron harmonics,” Radiophysics and Quantum Electronics, vol. 59, no. 8-9 (2017) 655-666. https://doi.org/10.1007/s11141-017-9732-z.

    Article  Google Scholar 

  73. I.V. Bandurkin, M.Y.Glyavin, S.V.Kuzikov, P.B.Makhalov, I.V.Osharin, A.V.Savilov, "Method of Providing the High Cyclotron Harmonic Operation Selectivity in a Gyrotron With a Spatially Developed Operating Mode," IEEE Transactions on Electron Devices, vol. 64, no. 9, pp. 3893-3897, Sept. 2017, https://doi.org/10.1109/TED.2017.2731982.

    Article  Google Scholar 

  74. Bandurkin I.V., Kalynov Y.K. & Savilov A.V., “Experimental Study of a Gyrotron with a Sectioned Klystron-Type Cavity Operated at Higher Cyclotron Harmonics,” Radiophys Quantum El, vol. 58 (2016) 694–700. https://doi.org/10.1007/s11141-016-9641-6.

    Article  Google Scholar 

  75. G.S. Nusinovich, “Non-linear theory of a large-orbit gyrotron,” International Journal of Electronics, vol. 72, no. 5-6 (1992) 959-967. https://doi.org/10.1080/00207219208925627.

    Article  Google Scholar 

  76. Bratman V.L., Kalynov Yu.K., Manuilov V.N., “Large-Orbit Gyrotron Operation in the Terahertz Frequency Range,” Phys. Rev. Lett., vol. 102, no. 24 (2009) 245101. https://doi.org/10.1103/PhysRevLett.102.245101.

    Article  Google Scholar 

  77. Zapevalov V., Idehara T., Sabchevski S. et al., “Design of a Large Orbit Gyrotron with a Permanent Magnet System,” International Journal of Infrared and Millimeter Waves, vol. 24 (2003) 253–260. https://doi.org/10.1023/A:1021855115770.

    Article  Google Scholar 

  78. Bratman, V.L., Fedotov A.E., Kalynov Y.K., Manuilov V.N., Ofitserov M.M., Samsonov S. V., Savilov A.V., “Moderately relativistic high-harmonic gyrotrons for millimeter/submillimeter wavelength band,” IEEE Transactions on Plasma Science, vol. 27, no. 2 (1999) 456-461. DOIi: https://doi.org/10.1109/27.772273.

    Article  Google Scholar 

  79. Idehara T., Ogawa I., Mitsudo S., Iwata Y., Watanabe S., Itakura Y., Itakura Y., Ohashi K., Kobayashi H., Yokoyama T., Zapevalov V.E., Glyavin M.Yu., Kuftin A.N., Malygin O.V., Sabchevski S.P., “A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet,” IEEE Transactions on Plasma Science, vol. 32, no. 3 (2004) 903-909. https://doi.org/10.1109/TPS.2004.827614.

    Article  Google Scholar 

  80. V.E. Zapevalov, Sh.E. Tsimring, “Multibeam gyrotrons,” Radiophysics and Quantum Electronics, vol. 33, no. 11 (1990) 594-960. https://doi.org/10.1007/BF01039240.

    Article  Google Scholar 

  81. Zapevalov V.E., Manuilov V.N., Malygin O.V., Tsimring S.E., “High-power twin-beam gyrotrons operating at the second gyrofrequency harmonic,“ Radiophysics and Quantum Electronics, vol. 37, no. 3 (1994) 237-240. https://doi.org/10.1007/BF01054034.

    Article  Google Scholar 

  82. Idehara T., Glyavin M., Kuleshov A., Sabchevski S.,Manuilov V., Zaslavsky V., Zotova I., Sedov A., "A novel THz-band double-beam gyrotron for high-field DNP-NMR spectroscopy," Review of Scientific Instruments, vol. 88, n. 9 (2017) 094708. https://doi.org/10.1063/1.4997994.

    Article  Google Scholar 

  83. Mitsudo S., Glyavin M., Khutoryan E., Bandurkin I., Saito T., Ishikawa Y., Manuilov V., Zotova I., Fedotov A., Kuleshov A., Sabchevski S., Tatematsu Y., Zaslavsky V., Idehara T., “An Experimental Investigation of a 0.8 THz Double-Beam Gyrotron,” Journal of Infrared, Millimeter, and Terahertz Waves, vol.40 (2019) n. 11–12, 1114–1128. https://doi.org/10.1007/s10762-019-00629-6.

    Article  Google Scholar 

  84. Whaley D.R., M.Q. Tran, T.M. Tran, T. M. Antonsen, Jr., “Mode competition and startup in cylindrical cavity gyrotrons using high-order operating modes,” IEEE-PS, vol. 22 (1994) 850-60. https://doi.org/10.1109/27.338300.

    Article  Google Scholar 

  85. G.S. Nusinovich et al., "Startup scenarios in high-power gyrotrons," in IEEE Transactions on Plasma Science, vol. 32, no. 3 (2004) 841-852. https://doi.org/10.1109/TPS.2004.828854.

    Article  Google Scholar 

  86. X.Chen, G.S.Nusinovich, O.Dumbrajs, H.Xiao, D.Xia, T.Ding, L.Liu, X.Han, T.Peng “Shadowing of the operating mode by sidebands in gyrotrons with diode-type electron guns” Phys. Plasmas 28, 013110 (2021); https://doi.org/10.1063/5.0036054

    Article  Google Scholar 

  87. O.V. Sinitsyn, G.S. Nusinovich, T.M. Antonsen, A.N. Vlasov 2008 "Startup scenarios in MW-class gyrotrons with diode and triode-type electron guns," 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves. 1–2. https://doi.org/10.1109/ICIMW.2008.4665790.

  88. G.S. Nusinovich, D.G. Kashyn, O.V. Sinitsyn, T.M. Antonsen, "Mode excitation in gyrotrons with controllable gun perveance," 2010 Abstracts IEEE International Conference on Plasma Science, 2010, pp. 1-1. https://doi.org/10.1109/PLASMA.2010.5534060.

    Article  Google Scholar 

  89. D.S. Tax, O. V. Sinitsyn, W.C. Guss, G.S. Nusinovich, M.A. Shapiro, R.J. Temkin, "Experimental Study of the Start-Up Scenario of a 1.5-MW, 110-GHz Gyrotron," in IEEE Transactions on Plasma Science, vol. 41, no. 4 (2013) 862-871. https://doi.org/10.1109/TPS.2013.2247635.

    Article  Google Scholar 

  90. O. Dumbrajs, T. Saito, and Y. Tatematsu, "Start-up scenario of a high-power pulsed gyrotron for 300 GHz band collective Thomson scattering diagnostics in the large helical device", Physics of Plasmas, vol. 23 (2016) 023106. https://doi.org/10.1063/1.4941703.

    Article  Google Scholar 

  91. P.C. Kalaria, Avramidis K.A., Gantenbein G., Illy S., Pagonakis I.G., Thumm M., Jelonnek (2018) "Mode competition control using triode-type start-up scenario for a 236 GHz gyrotron for DEMO," 2018 11th German Microwave Conference (GeMiC) 287–290. https://doi.org/10.23919/GEMIC.2018.8335086.

  92. A.Schlaich, C.Wu, I.Pagonakis, K.Avramidis, S.Illy, G.Gantenbein, J.Jelonnek, M.Thumm. “Frequency-based investigation of charge neutralization processes and thermal cavity expansion in gyrotrons” J. Infrared, Millimeter, and Terahertz Waves, 36, No. 9, 797-818 (2015)

    Article  Google Scholar 

  93. V.N.Manuilov, V.E.Semenov. “Ion Compensation for Space Charge in the Helical Electron Beams of Gyrotrons”. Radiophys Quantum El. 59, 33–42 (2016). https://doi.org/10.1007/s11141-016-9673-y

    Article  Google Scholar 

  94. A.V. Palitsin, Y.V. Rodin, A.G. Luchinin, A.N. Panin, V.L. Bakunin, Y.V. Novozhilova, A.V. Gromov, M.B. Goykhman, A.S. Zuev, M.Yu. Glyavin, “Experimental Study of Multi-Mode Dynamics of THz-Band Pulsed Magnetic Field Gyrotron”. IEEE Electron Device Letters, vol. 41, no. 10 (2020) 1576-1579. https://doi.org/10.1109/LED.2020.3018551.

    Article  Google Scholar 

  95. Y.V. Novozhilova, V.L. Bakunin, N.V. Preobrazhenskaya, N.M. Ryskin, K.A. Leshova, V.N. Manuilov, M.Yu. Glyavin (2019) "Pulsed Gyrotron Start-up Scenario in Presence of Voltage/Current Surge Front," 44th Int. Conf. on IR, MM, and THZ Waves, 1–2. https://doi.org/10.1109/IRMMW-THz.2019.8874116

  96. M.Yu. Glyavin, V.E. Zapevalov, A.N. Kuftin, “Mode competition in nonstationary regimes of high-power gyrotrons,” Radiophys. Quantum Electron., vol. 41, no.6 (1998) 542-548. https://doi.org/10.1007/BF02676688.

    Article  Google Scholar 

  97. G.S. Nusinovich, X. Chen, O. Dumbrajs, H. Xiao, X. Han, "Zones of soft and hard self-excitation in gyrotrons: Generalized approach", Physics of Plasmas 27 (2020) 073103. https://doi.org/10.1063/5.0010377.

    Article  Google Scholar 

  98. G.S. Nusinovich, O. Dumbrajs, “Possible gyrotron operation in the “no start current” zone caused by the axial dependence of the phase of the resonator field," Physics of Plasmas, vol. 25 (2018) 093108. https://doi.org/10.1063/1.5045317.

    Article  Google Scholar 

  99. [100] V.S. Ergakov, M.A. Moiseev, “To the theory of synchronization of cyclotron resonance generator oscillations by an external signal,” Izv. VUZov Radiofiz., vol. 18, no. 1 (1975) 120–131.

    Google Scholar 

  100. A.W. Fliflet, W.M. Manheimer, “Nonlinear theory of phase-locking gyrotron oscillators driven by an external signal,” Phys. Rev. A, vol. 39, no. 7 (1989) 3432–3443, 1989. https://doi.org/10.1103/PhysRevA.39.3432.

    Article  Google Scholar 

  101. McCurdy A. H., Armstrong C. M., “Mode selection by application of an external signal in an overmoded gyrotron oscillator,” Physical Review Letters, vol. 61, no. 20 (1988) 2316. https://doi.org/10.1103/PhysRevLett.61.2316.

    Article  Google Scholar 

  102. B. Levush, T.M. Antonsen, "Mode competition and control in higher-power gyrotron oscillators," in IEEE Transactions on Plasma Science, vol. 18, no. 3 (1990) 260-272. https://doi.org/10.1109/27.55895.

    Article  Google Scholar 

  103. P.E. Latham, B. Levush, G.S. Nusinovich, S. Parikh, "Theory of phase-locked gyrotrons operating at cyclotron harmonics," in IEEE Transactions on Plasma Science, vol. 22, no. 5, (1994) 818-824. https://doi.org/10.1109/27.338297.

    Article  Google Scholar 

  104. Cormier R (1993) “High-power Ka-band amplifier,” The Telecommunications and Data Acquisition Report 37–45

  105. McCurdy, A. H. (1987) Modification of electron cyclotron maser operation by application of an external signal (Doctoral dissertation, Yale University).

  106. Bakunin V.L., Denisov G.G., Novozhilova Y.V., “Zones of Frequency Locking by an External Signal in a Multimode Gyrotron of a Megawatt Power Level,” Radiophys Quantum El, vol. 58 (2016) 893–904. https://doi.org/10.1007/s11141-016-9663-0.

    Article  Google Scholar 

  107. Yakunina K.A., Kuznetsov A.P., Ryskin, N. M., “Injection locking of an electronic maser in the hard excitation mode,” Physics of Plasmas, vol. 22, no. 11 (2015) 113107. https://doi.org/10.1063/1.4935847.

    Article  Google Scholar 

  108. Bakunin V. L., Guznov Y. A., Denisov G. G., Zaitsev N. I., Zapevalov S. A., Kuftin A. N., Shevchenko A. S., “An experimental study of the influence of an external signal on the generation mode of a megawatt-power gyrotron,” Technical Physics Letters, vol. 44, no. 6 (2018) 473-475. https://doi.org/10.1134/S1063785018060020.

    Article  Google Scholar 

  109. Bakunin V. L., Denisov G. G., Novozhilova Y. V., “Phase Locking of a Gyrotron with Low-Frequency Voltage and Current Fluctuations by an External Monochromatic Signal,” Radiophysics and Quantum Electronics, vol. 63, no. 5 (2020) 392-402. https://doi.org/10.1007/s11141-021-10064-0.

    Article  Google Scholar 

  110. Denisov G. G., Kuftin A. N., Manuilov V. N., Zavolsky N. A., Chirkov A. V., Soluyanova E. A., Glyavin M.Y., “Design of master oscillator for frequency locking of a complex of megawatt level microwave sources,” Microwave and Optical Technology Letters, vol. 62, no. 6 (2020) 2137-2143. https://doi.org/10.1002/mop.32330.

    Article  Google Scholar 

  111. T.M. Antonsen Jr., S.Y. Cai, G.S. Nusinovich, "Effect of window reflection on gyrotron operation," Physics of Fluids B: Plasma Physics, vol. 4 (1992) 4131-4139. https://doi.org/10.1063/1.860320.

    Article  Google Scholar 

  112. N.S.Ginzburg, M.Yu.Glyavin, N.A.Zavol’skii, V.E.Zapevalov, M.A.Moiseev, Yu.V.Novozhilova. “A proposal to use reflection with delay for achieving the self-modulation and stochastic regimes in millimeter-wave gyrotrons”. Tech. Phys. Lett. 24, 436–438 (1998). https://doi.org/10.1134/1.1262164

    Article  Google Scholar 

  113. Glyavin M.Y., Zapevalov V.E., “Reflections Influence on the Gyrotron Oscillation Regimes,” International Journal of Infrared and Millimeter Waves, vol. 19 (1998) 1499–1511. https://doi.org/10.1023/A:1022655025562.

    Article  Google Scholar 

  114. Glyavin M.Y., Zapevalov V.E., Kulygin M.L., “Influence of the microwave-signal reflection on the generation efficiency of tunable gyrotrons,” Radiophys Quantum Electron, vol. 42 (1999) 962–966. https://doi.org/10.1007/BF02679276.

    Article  Google Scholar 

  115. E. Borie, "Effect of reflection on gyrotron operation," in IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 7 (2001) 1342-1345. https://doi.org/10.1109/22.932256.

    Article  Google Scholar 

  116. P. Muggli, M. Q. Tran, T. M. Tran, H.-G. Mathews, G. Agosti, S. Alberti, A. Perrenoud, “Effect of power reflection on the operation of a low-Q 8 GHz gyrotron,” IEEE Trans. Microwave Theory Tech., vol. 38 (1990) 1345–1351. https://doi.org/10.1109/22.58663.

    Article  Google Scholar 

  117. Glyavin M.Y., Zapevalov V.E., Kulygin M.L., “Nonstationary processes in a gyrotron with reflections from output-section inhomogeneities,”Radiophys Quantum Electron, vol. 41 (1998) 1096–1100. https://doi.org/10.1007/BF02676510.

    Article  Google Scholar 

  118. O. Dumbrajs, M.Yu. Glyavin, V.E. Zapevalov, N.A. Zavolsky, “Influence of reflections on mode competition in gyrotrons,” IEEE Trans. Plasma Sci., vol. 28 (2000) 588–596. https://doi.org/10.1109/27.887680.

    Article  Google Scholar 

  119. Airila M.I., Dumbrajs O., Kall P., Piosczyk B., “Influence of reflections on the operation of the 2 MW, CW 170 GHz coaxial cavity gyrotron for ITER,” Nuclear Fusion, vol. 43, no. 11 (2003) 1454-1457. https://doi.org/10.1088/0029-5515/43/11/018.

    Article  Google Scholar 

  120. M.I. Airila, P. Kall, "Effect of reflections on nonstationary gyrotron oscillations," in IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 2 (2004) 522-528. https://doi.org/10.1109/TMTT.2003.821920.

    Article  Google Scholar 

  121. O. Dumbrajs, T. Idehara, S. Watanabe, A. Kimura, H. Sasagawa, L. Agusu, S. Mitsudo, B. Piosczyk, "Reflections in gyrotrons with axial output," in IEEE Transactions on Plasma Science, vol. 32, no. 3 (2004) 899-902. https://doi.org/10.1109/TPS.2004.827596.

    Article  Google Scholar 

  122. O. Dumbrajs, G. S. Nusinovich, B. Piosczyk, "Reflections in gyrotrons with radial output: consequences for the ITER coaxial gyrotron," Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004., 2004, pp. 187-188. https://doi.org/10.1109/ICIMW.2004.1422017.

    Article  Google Scholar 

  123. G.Dammertz, O.Braz, A.K.Chopra, K.Koppenburg, M.Kuntze, B.Piosczyk, M.Thumm. “Recent results of the 1 MW, 140 GHz, TE22,6-mode gyrotron”. IEEE Trans. on Plasma Science, 27, 330-339 (1999) https://doi.org/10.1109/27.772259

    Article  Google Scholar 

  124. Rozental R.M., Ginzburg N.S., Zaitsev N.I., Ilyakov E.V., Kulagin I.S., “Controllable spectrum of an axial-mode gyrotron with external reflections,” Technical physics, vol. 51, no. 1 (2006) 78-81. https://doi.org/10.1134/S1063784206010129.

    Article  Google Scholar 

  125. Zotova I.V., Ginzburg N.S., Denisov G.G., Rozental R.M., Sergeev A.S., "Frequency Locking and Stabilization Regimes in High-Power Gyrotrons with Low-Q Resonators," Radiophys. Quantum El., vol. 58, no. 2, p. 684–693 (2016). https://doi.org/10.1007/s11141-016-9640-7

    Article  Google Scholar 

  126. Bogdashov A.A., Glyavin M.Y., Rozental’ R.M. et al. “Narrowing of the Emission Spectrum of a Gyrotron with External Reflections,” Tech. Phys. Lett., vol. 44, (2018) 221–224. https://doi.org/10.1134/S1063785018030069.

    Article  Google Scholar 

  127. E.Borie, G.Gantenbein, B.Jödicke, G.Dammertz, O.Dumbrajs, T.Geist, G.Hochschild, M.Kuntze, H.-U.Nickel, B.Piosczyk, M.Thumm. “Mode competition using TE03 gyrotron cavities”. Int. J. Electronics, 72, 687-720 (1992) https://doi.org/10.1080/00207219208925610

    Article  Google Scholar 

  128. Saito T., Melnikova M.M., Ryskin N.M. et al. “Effect of Reflection on Mode Competition and Multi-Frequency Oscillation in a High-Power Sub-THz Gyrotron: Experimental Observation and Theoretical Analysis,” J Infrared Millimeter, and Terahertz Waves, vol. 41 (2020) 697–710. https://doi.org/10.1007/s10762-020-00695-1.

    Article  Google Scholar 

  129. Genoud, J., Picard, J.F., Schaub, S.C. et al. Study of the Effect of Reflections on High-Power, 110-GHz Pulsed Gyrotron Operation. J Infrared Milli Terahz Waves 42, 547–556 (2021). https://doi.org/10.1007/s10762-021-00769-8.

    Article  Google Scholar 

  130. Glyavin M.Y., Denisov G.G., Kulygin M.L. et al. “Stabilization of gyrotron frequency by reflection from nonresonant and resonant loads,” Tech. Phys. Lett., vol. 41 (2015) 628–631. https://doi.org/10.1134/S106378501507007X.

    Article  Google Scholar 

  131. Glyavin M.Y., Denisov G.G., Kulygin M.L. et al. “Gyrotron Frequency Stabilization by a Weak Reflected Wave,” Radiophys Quantum El.,vol. 58 (2016) 673–683. https://doi.org/10.1007/s11141-016-9639-0.

    Article  Google Scholar 

  132. Khutoryan E.M., Idehara T., Melnikova M.M., Rozhnev A.G., Ryskin N.M., “Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron,” J Infrared Millimeter, and Terahertz Waves, vol. 38 (2017) 824–837. https://doi.org/10.1007/s10762-017-0378-x.

    Article  Google Scholar 

  133. M.Y. Glyavin, I. Ogawa, I.V. Zotova , N.S. Ginzburg, A.P. Fokin, A.S. Sergeev, R.M. Rozental, V.P. Tarakanov, A.A. Bogdashov, T.O. Krapivnitskaia, V.N. Manuilov, T. Idehara, "Frequency Stabilization in a Sub-Terahertz Gyrotron With Delayed Reflections of Output Radiation," in IEEE Transactions on Plasma Science, vol. 46, no. 7 (2018) 2465-2469. https://doi.org/10.1109/TPS.2018.2797480.

    Article  Google Scholar 

  134. Denisov G.G., Glyavin M.Y., Fedotov A.E., Zotova I.V., “Theoretical and Experimental Investigations of Terahertz-Range Gyrotrons with Frequency and Spectrum Control,” J Infrared Millimeter, and Terahertz Waves, vol. 41(2020) 1131–1143. https://doi.org/10.1007/s10762-020-00672-8.

    Article  Google Scholar 

  135. A. P. Fokin, A. A. Bogdashov, Y. V. Novozhilova, V. L. Bakunin, V. V. Parshin and M. Y. Glyavin, "Experimental Demonstration of Gyrotron Frequency Stabilization by Resonant Reflection," in IEEE Electron Device Letters, vol. 42, no. 7 (2021) 1077-1080. https://doi.org/10.1109/LED.2021.3083641.

    Article  Google Scholar 

  136. Kartikeyan MV, Borie E, Thumm M (2003) Gyrotrons: high-power microwave and millimeter wave technology. Springer Science & Business Media.

  137. Yulpatov VK (1981) “Shortened equations for the self-oscillations of the gyrotron,” In: Gyrotron-collection of scientific papers. Ed. A.V. Gaponov-Grehov (Institute of Applied Physics of RAN, Gorki, 1981) 26–40. (in Russian)

  138. Zavolsky NA, Nusinovich GS, Pavelyev AB (1989) “Stability of Single-Mode Oscillations and Non-Stationary Processes in Gyrotrons with Overmoded Low-Q Resonators”. Chapter in the book of collected papers “Gyrotrons”, IAP, Gorky, 84–112 (in Russian).

  139. Fliflet A.W., Lee R.C., Gold S.H., Manheimer W.M., Ott E., “Time-dependent multimode simulation of gyrotron oscillators,” Phys. Rev. A, vol. 43, no. 11 (1991) 6166—6176.https://doi.org/10.1103/PhysRevA.43.6166.

    Article  Google Scholar 

  140. S.H. Gold, A.W. Fliflet, “Multimode simulation of high frequency gyrotrons,’ International Journal of Electronics,” vol. 72, no. 5-6 (1992) 779-794. https://doi.org/10.1080/00207219208925614.

    Article  Google Scholar 

  141. S.Y. Cai, T.M. Antonsen Jr., G. Saraph, B. Levush, “Multifrequency theory of high power gyrotron oscillators,” International Journal of Electronics, vol. 72, no. 5-6 (1992) 759-777, https://doi.org/10.1080/00207219208925613.

    Article  Google Scholar 

  142. E. Borie, B. Jödicke, “Self-consistent theory of mode competition for gyrotrons, International Journal of Electronics,” vol. 72, no. 5-6 (1992) 721-744. https://doi.org/10.1080/00207219208925611.

    Article  Google Scholar 

  143. O. Dumbrajs, G.S. Nusinovich, "Self-consistent non-stationary theory of the gyrotron", Physics of Plasmas, vol. 23(2016) 083125. https://doi.org/10.1063/1.4961962.

    Article  Google Scholar 

  144. O. Dumbrajs, H. Kalis, "Multimode time-dependent gyrotron equations for different time scales", Physics of Plasmas, vol. 24(2017) 093111. https://doi.org/10.1063/1.5000388.

    Article  Google Scholar 

  145. Airila M.I., Dumbrajs O., Kåll P., Piosczyk, B., “Influence of reflections on the operationof the 2 MW, CW 170 GHz coaxial cavity gyrotron for ITER,” Nuclear fusion, vol. 43, no. 11 (2003) 1454. https://doi.org/10.1088/0029-5515/43/11/018.

    Article  Google Scholar 

  146. A.Grudiev, J.Jelonnek, K.Schünemann. “Time-domain analysis of reflections influence on gyrotron operation”. Physics of Plasmas 8, 2963 (2001) https://doi.org/10.1063/1.1366330

    Article  Google Scholar 

  147. N.S. Ginzburg, A.S. Sergeev, I.V. Zotova, “Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators,” Phys. Plasmas, vol. 22 (2015) 033101. https://doi.org/10.1063/1.4913672.

    Article  Google Scholar 

  148. J. Jelonnek, A. Grudiev and K. Schunemann. "Rigorous computation of time-dependent electromagnetic fields in gyrotron cavities excited by internal sources," IEEE Transactions on Plasma Science, vol. 27, no. 2, (1999) 374-383. https://doi.org/10.1109/27.772264.

    Article  Google Scholar 

  149. N.S. Ginzburg, A.S. Sergeev, I.V. Zotova, I.V.Zheleznov (2015) “Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence”. Phys. Plasmas, v.22, no.1, art.no.013112, 2015 https://doi.org/10.1063/1.4906364

  150. Tarakanov V.P (2017) “Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc.,” In EPJ Web of Conferences, vol. 149, (2017) p. 04024). EDP Sciences. https://doi.org/10.1051/epjconf/2017149014024.

  151. B. Goplen, L. Ludeking, D. Smithe, G. Warren, “User-configurable MAGIC for electromagnetic PIC calculations,” Comput Phys Commun., vol 87, (1995) 54-86.

    Article  Google Scholar 

  152. M. Botton, T.M. Antonsen Jr., B. Levush, K.T. Nguyen, and A.N. Vlasov “MAGY: A Time-Dependent Code for Simulations of Slow and Fast Microwave Sources,” IEEE Trans on Plasma Science, vol. 26, no. 3 (1998) 882-892. https://doi.org/10.1109/27.700860.

    Article  Google Scholar 

  153. K.T. Nguyen et al., "Modeling of gyroklystrons with MAGY," in IEEE Transactions on Plasma Science, vol. 28, no. 3 (2000) 867-886. https://doi.org/10.1109/27.887741.

    Article  Google Scholar 

  154. Vlasov A.N., Chernyavskiy I.A., Antonsen T.M., Nusinovich G.S., McDonald J. A., Levush B (2008) “Numerical models of mode interaction in gyrotrons: Capabilities and limitations,” In 2008 IEEE International Vacuum Electronics Conference (2008, April) pp. 58–59. IEEE. https://doi.org/10.1109/IVELEC.2008.4556414.

  155. S.Kern. “Numerical simulation of the gyrotron interaction in coaxial resonators”. Forschungszentrum Karlsruhe, Technik und Umwelt, Wissenschaftliche Berichte, FZKA 5837, 1-228. (1996)

    Google Scholar 

  156. R. Jain, M.V. Kartikeyan, “Design of a 60 GHz, 100 kW CW gyrotron for plasma diagnostics: GDS V.01 simulations," Progress in Electromagnetics Research B, vol. 22 (2010) 379. https://doi.org/10.2528/PIERB10061508.

    Article  Google Scholar 

  157. Sabchevski S., Idehara T., Saito T., Ogawa I., Mitsudo S., Tatematsu, Y (2010) “Physical Models and Computer Codes of the GYROSIM (GYROtron SIMulation) Software Package,” FIR Center Report FIR FU-99 (Jan. 2010).

  158. Avramides KA, Pagonakis IG, Iatrou CT, Vomvoridis JL (2012) “EURIDICE: A code-package for gyrotron interaction simulations and cavity design,” in Proceedings of the EC-17 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating https://doi.org/10.1051/epjconf/20123204016.

  159. F. Braunmueller, T. M. Tran, Q. Vuillemin, S. Alberti, J. Genoud, J.-Ph. Hogge, and M.Q. Tran, "TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments", Physics of Plasmas, vol. 22 (2015) 063115. https://doi.org/10.1063/1.4923299.

    Article  Google Scholar 

  160. P. Wang, X. Chen, H. Xiao, O. Dumbrajs, X. Qi and L. Li, "GYROCOMPU: Toolbox Designed for the Analysis of Gyrotron Resonators," in IEEE Transactions on Plasma Science, vol. 48, no. 9 (2020) 3007-3016. https://doi.org/10.1109/TPS.2020.3013299.

    Article  Google Scholar 

  161. Sawant A., Choi E., “Development of the Full Package of Gyrotron Simulation Code,” J. Korean Phys. Soc., vol. 73 (2018), 1750–1759. https://doi.org/10.3938/jkps.73.1750.

    Article  Google Scholar 

  162. E.S. Semenov, O.P. Plankin, R.M.Rozental, “Development of methods for analyzing electron-optical systems of gyrotrons with violations of azimuthal symmetry”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nonlin. Dynamika, vol. 23, no. 3 (2015) 94–105. (in Russian) https://doi.org/10.18500/0869-6632-2015-23-3-94-105.

    Article  Google Scholar 

  163. Gause GF (1934) The Struggle For Existence (1st ed.). Baltimore: Williams & Wilkins. Archived from the original on 2016–11–28. Retrieved 2016–11–24 (Visit: https://web.archive.org/web/20161128142418/http://www.ggause.com/Contgau.htm )

  164. Griffin JN, Silliman BR (2011) “Resource Partitioning and Why it Matters,” Nature Education Knowledge, vol. 3, no. 10, (2011) 49. (Visit: https://www.nature.com/scitable/knowledge/library/resource-partitioning-and-why-it-matters-17362658/)

  165. Maynard Smith J (1974) Models in Ecology (Cambridge University Press

  166. Acebrón J.A., Bonilla L.L., Vicente C.J.P., Ritort F., Spigler R., “The Kuramoto model: A simple paradigm for synchronization phenomena,” Reviews of modern physics, vol. 77, no. 1 (2005) 137. https://doi.org/10.1103/RevModPhys.77.137.

    Article  Google Scholar 

  167. Acebrón J.A., Spigler R (2007) “The Remote Control and Beyond: The Legacy of Robert Adler,” SIAM News, 40 5

Download references

Acknowledgements

Some of the results obtained by the IAP-RAS team in recent years have been carried out within the framework of the projects 0030-2021-0001 and 0030-2021-0027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Glyavin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabchevski, S.P., Glyavin, M.Y. & Nusinovich, G.S. The Progress in the Studies of Mode Interaction in Gyrotrons. J Infrared Milli Terahz Waves 43, 1–47 (2022). https://doi.org/10.1007/s10762-022-00845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00845-7

Keywords

Navigation