Skip to main content
Log in

The Concept of a Gyrotron with Megawatt Output at Both First and Second Cyclotron Harmonics for Plasma Heating in Spherical Tokamaks

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Based on the analysis of electron–wave interaction, we study the possibility of developing a gyrotron that is able to provide a megawatt output power in quasi-continuous (long-pulse) oscillations at both first and second gyrofrequency harmonics. For selective excitation at the second cyclotron harmonic when the operating current is significantly higher than its starting value, we propose to lock the gyrotron by a weak (several percent power) monochromatic incoming signal which suppresses spurious oscillations at the fundamental cyclotron resonance in the gyrotron start-up process. Simulations of a two-frequency gyrotron with an output power of 1 MW at the first cyclotron harmonic (19 GHz) and 0.8 MW at the second one (38 GHz) based on a nonstationary self-consistent system of equations are presented. Such a source of radiation is of interest for plasma-heating systems in spherical tokamaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Thumm, J. IRMM & THz Waves, 41, No. 1, 1–140 (2020). https://doi.org/10.1007/s10762-019-00631-y

    Article  MathSciNet  Google Scholar 

  2. M. Thumm, G. G. Denisov, K. Sakamoto, and M.Q.Tran, Nucl. Fusion, 59, No. 7, 073001 (2019). https://doi.org/10.1088/1741-4326/ab2005

    Article  ADS  Google Scholar 

  3. R.C.Wolf, S. Bozhenkov, A. Dinklage, et al., Plasma Phys. Control. Fusion, 61, No. 1, 014037 (2019). https://doi.org/10.1088/1361-6587/aaeab2

    Article  ADS  Google Scholar 

  4. C. Darbos, F. Albajar, T. Bonicelli, et al., J. IRMM & THz Waves, 37, No. 1, 4–20 (2016). https://doi.org/10.1007/s10762-015-0211-3

    Article  Google Scholar 

  5. T. Kariya, R. Minami, T. Imai, et al., Nucl. Fusion, 59, No. 6, 066009 (2019). https://doi.org/10.1088/1741-4326/ab0e2c

    Article  ADS  Google Scholar 

  6. H. Zohm and M. Thumm, J. Phys. Conf. Ser., 25, 033 (2005). https://doi.org/10.1088/1742-6596/25/1/033

    Article  Google Scholar 

  7. H. Idei, T. Onchi, K. Mishra, et al., Nucl. Fusion, 60, No. 1, 016030 (2019). https://doi.org/10.1088/1741-4326/ab4c12

    Article  ADS  Google Scholar 

  8. A. Sykes, A. E. Costley, C. G. Windsor, et al., Nucl. Fusion, 58, No. 1, 016039 (2018). https://doi.org/10.1088/1741-4326/aa8c8d

    Article  ADS  Google Scholar 

  9. V. B. Minaev, V.K.Gusev, N.V. Sakharov, et al., Nucl. Fusion, 57, No. 6, 066047 (2017). https://doi.org/10.1088/1741-4326/aa69e0

    Article  ADS  Google Scholar 

  10. V. E. Zapevalov, S. A. Malygin, and Sh. E. Tsimring, Radiophys. Quantum Electron., 36, No. 6, 346–353 (1993). https://doi.org/10.1007/BF01038234

    Article  ADS  Google Scholar 

  11. V. E. Zapevalov, V. N. Maunilov, S. A. Malygin, and Sh. E. Tsimring, Radiophys. Quantum Electron., 37, No. 3, 237–270 (1994). https://doi.org/10.1007/BF01054034

    Article  ADS  Google Scholar 

  12. N. A. Zavolsky, E.V. Ilyakov, Yu.K.Kalynov, et al., Radiophys. Quantum Electron., 61, No. 1, 40–47 (2018). https://doi.org/10.1007/s11141-018-9868-5

    Article  ADS  Google Scholar 

  13. V. S. Ergakov, M.A.Moiseev, and V. I. Khizhnyak, Radio Eng. Electron. Phys., 23, 92–98 (1978).

    ADS  Google Scholar 

  14. G. S. Nusinovich, Radiotekh. Élektron., 22, No. 10, 2214–2216 (1977).

    ADS  Google Scholar 

  15. V. L. Bakunin, G.G.Denisov, and Yu.V.Novozhilova, Tech. Phys. Lett ., 40, 382–385 (2014). https://doi.org/10.1134/S1063785014050034

    Article  ADS  Google Scholar 

  16. V. L. Bakunin, Yu.M.Guznov, G.G.Denisov, et al., Radiophys. Quantum Electron., 62, Nos. 7–8, 481–489 (2019). https://doi.org/10.1007/s11141-020-09994-y

    Article  ADS  Google Scholar 

  17. N.D.Ginzburg, A. S. Sergeev, and I.V. Zotova, Phys. Plasmas, 22, No. 3, 033101 (2015). https://doi.org/10.1063/1.4913672

    Article  ADS  Google Scholar 

  18. A. E. Fedotov, R. M. Rozental, I. V. Zotova, et al., J. IRMM & THz Waves, 39, No. 10, 975–983 (2018).

    Google Scholar 

  19. N. I. Zaitsev, S. A. Zapevalov, A. V. Malygin, et al., Radiophys. Quantum Electron., 53, No. 3, 178–181 (2010). https://doi.org/10.1007/s11141-010-9214-z

    Article  ADS  Google Scholar 

  20. M.Yu.Glyavin and V.N.Manuilov, Int. J. IRMM & THz Waves, 34, No. 2, 119–126 (2013).

    Google Scholar 

  21. M.Yu.Glyavin, A. L. Goldenberg, A. N. Kuftin, et al., IEEE Trans. Plasma Sci., 27, No. 2, 474–483 (1999). https://doi.org/10.1109/27.772276

    Article  ADS  Google Scholar 

  22. A. V. Chirkov, G. G. Denisov, and A. N. Kuftin, Appl. Phys. Lett ., 106, No. 26, 263501 (2015). https://doi.org/10.1063/1.4923269

    Article  ADS  Google Scholar 

  23. A. L. Gol’denberg and T.B. Pankratova, Élekron. Tekh. SVCh, No. 9, 81–89 (1971).

    Google Scholar 

  24. V. E. Zapevalov, Yu.K.Kalynov, V.K. Lygin, et al., Radiophys. Quantum Electron., 49, No. 3, 185–195 (2006). https://doi.org/10.1007/s11141-006-0051-z

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.V. Zheleznov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 5–6, pp. 383–392, May–June 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, G.G., Glyavin, M.Y., Zotova, I.V. et al. The Concept of a Gyrotron with Megawatt Output at Both First and Second Cyclotron Harmonics for Plasma Heating in Spherical Tokamaks. Radiophys Quantum El 63, 345–353 (2020). https://doi.org/10.1007/s11141-021-10059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10059-x

Navigation