Skip to main content
Log in

Using the 2.5-Dimensional PIC Code for Simulating Gyrotrons with Nonsymmetric Operating Modes

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Modeling of gyrotrons by the particle-in-cell (PIC) method usually requires three-dimensional simulation. For large parameters of the oversized interaction space, this entails rather long calculation times. This work shows that one can reduce the dimension of the problem and employ 2.5-dimensional PIC simulation under certain conditions. Using a gyrotron with an operating frequency of 170 GHz and operating mode TE28, 12 as an example, the influence of an external signal on the output-radiation spectrum in the presence of accelerating-voltage fluctuations is studied

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Yu.Glyavin, G.G.Denisov, V. E. Zapevalov, et al., Phys. Usp., 59, No. 6, 595–604 (2016). https://doi.org/10.3367/UFNe.2016.02.037801

    Article  ADS  Google Scholar 

  2. S. Sabchevski, M.Glyavin, S.Mitsudo, et al., J. Infrared Millim. Teraherts Waves, 42, No. 7, 715–721 (2021). https://doi.org/10.1007/s10762-021-00804-8

  3. S. Mizojiri, K. Shimamura, M. Fukunari, et al., IEEE Microw. Wireless Compon. Lett., 28, No. 9, 834–836 (2018). https://doi.org/10.1109/LMWC.2018.2860248

    Article  Google Scholar 

  4. S.V. Kutsaev, B. Jacobson, A.Yu. Smirnov, et al., Phys. Rev. Appl., 11, No. 3, 034052 (2018). https://doi.org/10.1103/PhysRevApplied.11.034052

  5. M.A. K. Othman, J.Picard, S. Schaub, et al., Appl. Phys. Lett., 117, No. 7, 073502 (2020). https://doi.org/10.1063/5.0011397

  6. M. K.A. Thumm, G. G. Denisov, K. Sakamoto, and M. Q.Tran, Nucl. Fusion, 59, No. 7, 073001 (2019). https://doi.org/10.1088/1741-4326/ab2005

  7. A. G. Litvak, G.G.Denisov, and M. Y. Glyavin, IEEE J. Microw., 1, No. 1, 260–268 (2021). https://doi.org/10.1109/JMW.2020.3030917

    Article  Google Scholar 

  8. M. Fukunari, K.Komurasaki, Y. Nakamura, et al., J. Energy Power Eng., 11, 361–370 (2017). https://doi.org/10.17265/1934-8975/2017.06.001

  9. K.Komurasaki and K.Kuniyoshi, Int. J. Aerosp. Eng., 2018, 9247429 (2018). https://doi.org/10.1155/2018/9247429

    Article  Google Scholar 

  10. S.Alberti, F.Braunmueller, T. M.Tran, et al., Phys. Rev. Lett., 111, No. 20, 205101 (2013). https://doi.org/10.1103/PhysRevLett.111.205101

  11. I. Zotova, A. Fedotov, A. Sergeev, et al., in: 2019 Int. Vacuum Electronics Conf. April 28–May 1, 2019, Busan, South Korea, 8745065. https://doi.org/10.1109/IVEC.2019.8745065

  12. E.V. Blokhina, S.P.Kuznetsov, and A. G.Rozhnev, IEEE Trans. Electron Dev., 54, No. 2, 188–193 https://doi.org/10.1109/TED.2006.888757

  13. A. E. Fedotov, R. M.Rozental, O. B. Isaeva, and A. G.Rozhnev, IEEE Electron Dev. Lett., 42, No. 7, 1073–1076. https://doi.org/10.1109/LED.2021.3078761

  14. N. S. Ginzburg, R. M.Rozental, A. S. Sergeev, et al., Phys. Rev. Lett., 119, No. 3, 034801 (2017). https://doi.org/10.1103/PhysRevLett.119.034801

  15. R. M.Rozental, I. V. Zotova, N. S.Ginzburg, et al., J. Infrared Millim. Terahertz Waves, 40, 150–157 (2019). https://doi.org/10.1007/s10762-018-0561-8

  16. N.Kumar and A. Bera, IEEE Trans. Electron Dev., 67, No. 8, 3369–3377 (2020). https://doi.org/10.1109/TED.2020.3000975

    Article  ADS  Google Scholar 

  17. I. Bandurkin, A. Fedotov, M. Glyavin, et al., IEEE Trans. Electron Dev., 67, No. 10, 4432–4436 (2020). https://doi.org/10.1109/TED.2020.3012524

    Article  ADS  Google Scholar 

  18. M. C. Blank, K.A.Avramidis, S. Illy, and C.Wu, in: 18th Int. Vacuum Electronics Conf. April 24–26, 2017, London, UK, 8289628. https://doi.org/10.1109/IVEC.2017.8289628

  19. C.An, D. Zhang, J. Zhang, et al., in: 2018 Asia-Pacific Microwave Conf., November 6–9, 2018, Kyoto, Japan, pp. 1079–1081. https://doi.org/10.23919/APMC.2018.8617302

  20. M. Lin and D.N. Smithe, in: 2019 Int. Vacuum Electronics Conf., April 28–May 1, 2019, Busan, South Korea, 8745190. https://doi.org/10.1109/IVEC.2019.8745190

  21. J.Neudorfer, A. Stock, R. Schneider, et al., IEEE Trans. Plasma Sci., 41, No. 1, 87–98 (2013). https://doi.org/10.1109/TPS.2012.2229298

    Article  ADS  Google Scholar 

  22. N. S. Ginzburg, A. S. Sergeev, and I.V. Zotova, Phys. Plasmas, 22, No. 3, 033101 (2015). https://doi.org/10.1063/1.4913672

  23. K.A.Yakunina, A.P.Kuznetsov, N.M.Ryskin, Phys. Plasmas, 22, No. 11, 113107 (2015). https://doi.org/10.1063/1.4935847

  24. V. L. Bakunin, G. G. Denisov, and Yu.V.Novozhilova, Radiophys. Quantum Electron., 63, Nos. 5–6, 392–402 (2020). https://doi.org/10.1007/s11141-021-10064-0

    Article  ADS  Google Scholar 

  25. M.Yu.Glyavin, G.G.Denisov, M. L.Kulygin, et. al, Radiophys. Quantum Electron., 58, No. 9, 673–683 (2016). https://doi.org/10.1007/s11141-016-9639-0.

  26. I.V.Zotova, G.G.Denisov, N. S.Ginzburg, et al., Phys. Plasmas, 25, No. 1, 013104 (2018). https://doi.org/10.1063/1.5008666

  27. Yu.V.Novozhilova, G.G.Denisov, M.Yu.Glyavin, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 25, No. 1, 4–34 (2017).

  28. M. M. Melnikova, A. V.Tyshkun, and N.M.Ryskin, J. Infrared Millim. Terahertz Waves, 42, No. 4, 446–461 (2021). https://doi.org/10.1007/s10762-021-00768-9

    Article  Google Scholar 

  29. R. M.Rozental, N. S. Ginzburg, M.Yu.Glyavin, et al., Phys. Plasmas, 22, No. 9, 093118 (2015). https://doi.org/10.1063/1.4931746

  30. A. B.Adilova and N.M.Ryskin, Radiophys. Quantum Electron., 63, Nos.9–10, 703–715 (2021). https://doi.org/10.1007/s11141-021-10091-x

    Article  ADS  Google Scholar 

  31. R. M.Rozental, I. V. Zotova, M.Yu. Glyavin, et al., Radiophys. Quantum Electron., 63, No. 5, 363–370 (2020). https://doi.org/10.1007/s11141-021-10061-3

    Article  ADS  Google Scholar 

  32. M.Yu.Glyavin, A. E. Fedotov, I.V. Zotova, et al., Radiophys. Quantum Electron., 61, No. 11, 797–800 (2019). https://doi.org/10.1007/s11141-019-09937-2

    Article  ADS  Google Scholar 

  33. R. M.Rozental, N. I. Zaitsev, I. S. Kulagin, et al., IEEE Trans. Plasma Sci., 32, No. 2, 418–421 (2004). https://doi.org/10.1109/TPS.2004.829831

    Article  ADS  Google Scholar 

  34. A. A. Bogdashov, M.Yu.Glyavin, R.M.Rozental, et al., Tech. Phys. Lett., 44, No. 3, 221–224 (2018). https://doi.org/10.1134/S1063785018030069.

  35. M.Yu.Glyavin, I.Ogawa, I.V. Zotova, et al, IEEE Trans. Plasma Sci., 46, No. 7, 2465–2469 (2018). https://doi.org/10.1109/TPS.2018.2797480

    Article  ADS  Google Scholar 

  36. N. A. Zavol’sky, V.E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron., 49, No. 4, 275–287 (2006). https://doi.org/10.1007/s11141-006-0061-x

  37. V. E.Myasnikov, M. V. Agapova, A. N. Kuftin, et al., in: 38th Int. Conf. on Infrared, Millimeter, and Terahertz Waves, September 1–6, 2013, Mainz, Germany, 6665557. https://doi.org/10.1109/IRMMW-THz.2013.6665557

  38. S. E.Tsimring, Electron Beams and Microwave Vacuum Electronics, Wiley, Hoboken (2007).

    Google Scholar 

  39. S.N.Vlasov, G.M. Zhislin, I.M.Orlova, et al., Radiophys. Quantum Electron., 12, No. 8, 972–978 (1969). https://doi.org/10.1007/BF01031202

  40. V. E. Zapevalov, A. S. Zuev, V.V.Parshin, et al., Radiophys. Quantum Electron., 64, No. 4, 240–250 (2021). https://doi.org/10.1007/s11141-021-10127-2

  41. I. V. Zotova, N. S.Ginzburg, G. G. Denisov, et al., Radiophys. Quantum Electron., 58, No. 4, 684–693 (2016). https://doi.org/10.1007/s11141-016-9640-7

    Article  ADS  Google Scholar 

  42. G. G. Denisov, EPJ Web Conf., 149, 01001 (2017). https://doi.org/10.1051/epjconf/201714901001

    Article  Google Scholar 

  43. D. Fasel, F. Albajar, T. Bonicelli, et al., Fusion Eng. Des., 86, Nos. 6–8, 872–875 (2011). https://doi.org/10.1016/j.fusengdes.2011.02.017

    Article  Google Scholar 

  44. S.X. Ma, M. Zhang, L. L.Xia, et al., IEEE Trans. Plasma Sci., 42, No. 3, 656–663 (2014). https://doi.org/10.1109/TPS.2014.2300506

  45. H. Braune, P.Brand, R. Krampitz, et al., J. Phys.: Conf. Ser., 25, 56–65 (2005). https://doi.org/10.1088/1742-6596/25/1/008

    Article  ADS  Google Scholar 

  46. B.Razavi, IEEE J. Solid-State Circ., 39, No. 9, 1415–1424 (2004). https://doi.org/10.1109/JSSC.2004.831608

    Article  ADS  Google Scholar 

  47. C. Liu, H. Huang, Z. Liu, et al., IEEE Trans. Plasma Sci., 44, No. 8, 1291–1297 (2016). https://doi.org/10.1109/TPS.2016.2565564

    Article  ADS  Google Scholar 

  48. S.-T.Han, D.Kim, J.Kim, and J.-R.Yang, IEEE Access, 8, 145881–145886 (2020). https://doi.org/10.1109/ACCESS.2020.3013651

    Article  Google Scholar 

  49. A.V. Chirkov, G. G. Denisov, and A.N.Kuftin, Appl. Phys. Lett., 106, No. 26, 263501 (2015). https://doi.org/10.1063/1.4923269

  50. V. L. Bakunin, Yu.M.Guznov, G. G. Denisov, et al., Radiophys. Quantum Electron., 62, Nos. 7–8, 481–489 (2019). https://doi.org/10.1007/s11141-020-09994-y

    Article  ADS  Google Scholar 

  51. X. Zhou and A. S.Daryoush, IEEE Microw. Guided Wave Lett., 3, No. 8, 244-246 (1993). https://doi.org/10.1109/75.242227

    Article  Google Scholar 

  52. H. Ikeda and Y. Itoh, IEEE Trans. Microw. Theory Tech., 66, No. 7, 3315–3322 (2018). https://doi.org/10.1109/TMTT.2018.2836393

    Article  ADS  Google Scholar 

  53. R.Adler, Proc. IRE., 34, No. 6, 351–357 (1946). https://doi.org/10.1109/JRPROC.1946.229930

    Article  Google Scholar 

  54. M.Yu.Glyavin, N.A. Zavol’sky, V. E. Zapevalov, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 23, No. 2, 108–118 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Rozental.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 420–433, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_420

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozental, R.M., Tai, E.M., Tarakanov, V.P. et al. Using the 2.5-Dimensional PIC Code for Simulating Gyrotrons with Nonsymmetric Operating Modes. Radiophys Quantum El 65, 384–396 (2022). https://doi.org/10.1007/s11141-023-10221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10221-7

Navigation