Skip to main content
Log in

Widening of the Frequency Tuning Bandwidth in a Subterahertz Gyrotron with an External Bragg Reflector

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study theoretically the possibility to widen the frequency tuning bandwidth of the generation of subterahertz gyrotrons by using strong signal reflections by periodic structures of the Bragg type installed in the output line. It was shown earlier that wideband tuning is possible in gyrotrons with short cavities, where the use of such cavities reduces the sensitivity of excitation of higher longitudinal modes to the spread of electron beam velocities. However, the issue of the formation of polyhelical electron beams with high currents arises in this case, and such beams are required to ensure the conditions of self-excitation in a short gyrotron cavity. The introduction of strong reflections allows one to significantly reduce the starting and operating currents, at which several higher longitudinal modes are excited. This ensures frequency tuning of about 8% at a power level of 0.5–1.0 kW with the use of electron beams which can be formed in magnetron-injection guns having the conventional geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Yu.Glyavin, G.G. Denisov, V.E. Zapevalov, et al., Phys. Usp., 186, No. 6, 595–604. https://doi.org/10.3367/UFNe.2016.02.037801

  2. M. Thumm, J. Infrared Millim. Terahertz Waves, 41, 1–140. https://doi.org/10.1007/s10762-019-00631-y

  3. N. A. Zavolsky, V.E. Zapevalov, A. S. Zuev, et al., Radiophys. Quantum Electron., 61, No. 6, 436-444 (2018). https://doi.org/10.1007/s11141-018-9905-4

    Article  ADS  Google Scholar 

  4. S. Asai, T. Yamazaki, A. Miyazaki, et al., J. Infrared Millim. Terahertz Waves, 33, 766–776. https://doi.org/10.1007/s10762-011-9864-8

  5. T. H. Chang, T. Idehara, I. Ogawa, et al., J. Appl. Phys, 105, 063304 (2009). https://doi.org/10.1063/1.3097334

    Article  ADS  Google Scholar 

  6. A.C.Torrezan, S.-T.Han, I. Mastovsky, et al., IEEE Trans. Plasma Sci., 38, No. 6, 1150–1159 (2010). https://doi.org/10.1109/TPS.2010.2046617

    Article  ADS  Google Scholar 

  7. A. E. Fedotov, R. M. Rozental, I. V. Zotova, et al., J. Infrared Millim. Terahertz Waves, 39, 975–983 (2018). https://doi.org/10.1007/s10762-018-0522-2

    Article  Google Scholar 

  8. M.Yu.Glyavin, A.E. Fedotov, I.V. Zotova, et al., Radiophys. Quantum Electron., 61, No. 11, 797–800 (2019). https://doi.org/10.1007/s11141-019-09937-2

    Article  Google Scholar 

  9. A. N. Kuftin, V.K. Lygin, V.N.Manuilov, et al., Int. J. Infrared Millim. Waves, 20, No. 3, 361–382 (1999). https://doi.org/10.1023/A:1021757213511

    Article  Google Scholar 

  10. G. Gantenbein, E. Borie, G. Dammertz, et al., IEEE Trans. Plasma Sci., 22, No. 5, 861–870 (1994). https://doi.org/10.1109/27.338301

    Article  ADS  Google Scholar 

  11. E. M. Khutoryan, T. Idehara, M. M. Melnikova, et al., J. Infrared Millim. Terahertz Waves, 38, 824–837 (2017). https://doi.org/10.1007/s10762-017-0378-x

    Article  Google Scholar 

  12. P. Muggli, M.Q.Tran, and T. M. Tran, IEEE Trans. Plasma Sci., 20, No. 4, 458–465 (1992). https://doi.org/10.1109/27.256774

    Article  ADS  Google Scholar 

  13. M.M. Chumakova, S.A.Usacheva, M.Yu.Glyavin, et al., IEEE Trans. Plasma Sci., 42, No. 8, 2030–2036 (2014). https://doi.org/10.1109/TPS.2014.2331235

    Article  ADS  Google Scholar 

  14. N. F. Kovalev, M. I. Petelin, and M. N. Reznikov, “USSR Author’s Certificate 720592, MKI N01P /06. Resonator: No. 2656731/18-09,” filed 14.08.1978, published 05.03.1980.

  15. V. L. Bratman, G. G. Denisov, N. S. Ginzburg, and M. I. Petelin, IEEE J. Quant. Electron., 19, No. 3, 282–296 (1983). https://doi.org/10.1109/JQE.1983.1071840

    Article  ADS  Google Scholar 

  16. C.K.Chong, D. B. McDermott, M. M. Razeghi, et al., IEEE Trans. Plasma Sci., 20, No. 3, 393–402 (1992). https://doi.org/10.1109/27.142841

    Article  ADS  Google Scholar 

  17. N. S. Ginzburg, A. S. Sergeev, I.V. Zotova, and I.V. Zheleznov, Phys. Plasmas, 22, 013112 (2015). https://doi.org/10.1063/1.4906364

    Article  ADS  Google Scholar 

  18. I. V. Zotova, G.G. Denisov, N. S. Ginzburg, et al., Phys. Plasmas, 25, 013104 (2018). https://doi.org/10.1063/1.5008666

    Article  ADS  Google Scholar 

  19. N. S. Ginzburg, G. S. Nusinovich, N.A. Zavolsky, Int. J. Electronics, 61, No. 6, 881–894 (1986). https://doi.org/10.1080/00207218608920927

    Article  Google Scholar 

  20. N. S. Ginzburg, M.Yu.Glyavin,N.A. Zavolsky, et al., Tech. Phys. Lett., 24, 436–438 (1998). https://doi.org/10.1134/1.1262164

    Article  ADS  Google Scholar 

  21. O. Dumbrajs, M.Yu. Glyavin, V. E. Zapevalov, and N.A. Zavolsky, IEEE Trans. Plasma Sci., 28, No. 3, 588–596 (2000). https://doi.org/10.1109/27.887680

    Article  ADS  Google Scholar 

  22. A. S. Sedov, A. S. Zuev, E. S. Semenov, et al., Results in Physics, 11. 158–161 (2018). https://doi.org/10.1016/j.rinp.2018.07.040

    Article  ADS  Google Scholar 

  23. V. L. Bratman, M. A. Moiseev, M. I. Petelin, and R. É. Érm, Radiophys. Quantum Electron., 16, No. 4, 474-480 (1973).

    Article  ADS  Google Scholar 

  24. A. Miyazaki, T. Yamazaki, T. Suehara, et al., J. Infrared Millim. Terahertz Waves, 35, 91–100. https://doi.org/10.1007/s10762-013-0001-8

  25. M.Yu.Glyavin, G.G. Denisov, M. L. Kulygin, et al., Radiophys. Quantum Electron., 58, No. 9, 673-683 (2016). https://doi.org/10.1007/s11141-016-9639-0

    Article  ADS  Google Scholar 

  26. A. Miyazaki, T. Yamazaki, T. Suehara, et al., Progr. Theor. Exp. Phys., 2015, No. 1, 011C01 (2015). https://doi.org/10.1093/ptep/ptu181

    Article  Google Scholar 

  27. V.P.Tarakanov, EPJ Web of Conf., 149, 04024 (2017). https://doi.org/10.1051/epjconf/20171490

    Article  Google Scholar 

  28. S. Ceccuzzi, A. Doria, and G. P. Gallerano, Fus. Eng. Design, 123, 477–480 (2017). https://doi.org/10.1016/j.fusengdes.2017.02.059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Rozental’.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 5–6, pp. 403–410, March 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozental’, R.M., Zotova, I.V., Glyavin, M.Y. et al. Widening of the Frequency Tuning Bandwidth in a Subterahertz Gyrotron with an External Bragg Reflector. Radiophys Quantum El 63, 363–370 (2020). https://doi.org/10.1007/s11141-021-10061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10061-3

Navigation