Skip to main content
Log in

Dust Temperature Profiles in Dense Cores Related to the High-Mass Star-Forming Regions

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We obtained continuum maps at a wavelength of 350 μm for eight gas–dust clouds from the southern hemisphere using the APEX-12m telescope. The clouds are related to the regions of the formation of high-mass stars and star clusters and have dense cores. The core sizes estimated at half the maximum intensity at a wavelength of 350 μm are 0.1–0.2 pc. The core masses and gas mean densities lie in the ranges 20–1000 Mʘ and (0.3–7.3)·106 cm−3, respectively. A comparison of the obtained data at a wavelength of 350 μm with observation data of the same objects at a wavelength of 1.2 mm was carried out. From the intensity ratios at two wavelengths reduced to one angular resolution, the spatial distributions of the average dust temperature on the line of sight are calculated. Dust temperature maps in most objects correlate with intensity distributions at a wavelength of 350 μm. A decrease in the dust temperature with distance from the center is detected in most cores. The obtained dust temperature profiles in most cases turned out to be close to linear ones. Using a simple spherically symmetric model of a dust cloud, it is shown that temperature profiles close to the observed ones can be obtained under the assumption of the presence of an internal source by varying the density profile parameters and specifying a powerlaw index β of the dust emissivity dependence on frequency as a constant. It is shown that the dust temperature estimates strongly depend on the chosen value of β. It is considered how possible variations of β in the cloud can affect the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C.Tan, M. T. Beltran, P. Caselli, et al., in: H.Beuther, R. S.Klessen, C.P. Dullemond, and T.Henning, ed., Protostars and Planets VI (2014). 10.2458/azu\_uapress\_9780816531240-ch007

  2. F. Motte, S.Bontemps, and F. Louvet, Annual Rev. Astron. Astrophys., 56, 41–82 (2018). https://doi.org/10.1146/annurev-astro-091916-055235

  3. B. T. Draine and H.M. Lee, Astrophys. J., 285, 89–108 (1984). https://doi.org/10.1086/162480

    Article  ADS  Google Scholar 

  4. G. Sreenilayam, M. Fich, P.Ade, et al., Astron. J., 147, No. 3, 53 (2004). 10.1088/0004-6256/147/3/53

  5. Planck Collaboration, P.A.R.Ade, N.Aghanim, et al., Astron. Astrophys., 536, A23 (2011). https://doi.org/10.1051/0004-6361/201116472

  6. A. J.Rigby, N.Peretto, R.Adam, et al., Astron. Astrophys., 615, A18 (2018). https://doi.org/10.1051/0004-6361/201732258

  7. S. I. Sadavoy, A. M. Stutz, S. Schnee, et al., Astron. Astrophys., 588, A30 (2016). https://doi.org/10.1051/0004-6361/201527364

    Article  Google Scholar 

  8. H. W. Yi, J.E. Lee, T. Liu, et al., Astrophys. J., 236, No. 2, 51 (2018). https://doi.org/10.3847/1538-4365/aac2e0

    Article  Google Scholar 

  9. M. Kohler, N.Ysard, and A.P. Jones, Astron. Astrophys., 579, A15 (2015). https://doi.org/10.1051/0004-6361/201525646

    Article  ADS  Google Scholar 

  10. M. Juvela, J.Montillaud, N.Ysard, and T. Lunttila, Astron. Astrophys., 556, A63 (2013). https://doi.org/10.1051/0004-6361/201220910

    Article  ADS  Google Scholar 

  11. M. Juvela, K.Demyk, Y. Doi, et al., Astron. Astrophys., 584, A94 (2015). https://doi.org/10.1051/0004-6361/201425269

    Article  Google Scholar 

  12. E. Mannfors, M. Juvela, L.Bronfman, et al., Astron. Astrophys., 654, A123 (2021). https://doi.org/10.1051/0004-6361/202037791

  13. N. Boudet, H. Mutschke, C.Nayral, et al., Astrophys. J., 633, No. 1, 272–281 (2005). https://doi.org/10.1086/432966

  14. A. Coupeaud, K.Demyk, C. Meny, et al., Astron. Astrophys., 535, A124 (2011). https://doi.org/10.1051/0004-6361/201116945

    Article  Google Scholar 

  15. M. C. Y. Chen, J.Di Francesco, D. Johnstone, et al., Astrophys. J., 826, No. 1, 95 (2016). https://doi.org/10.3847/0004-637X/826/1/95

    Article  ADS  Google Scholar 

  16. A. Bracco, P.Palmeirim, P.Andre, et al., Astron. Astrophys., 604, A52 (2017). 10.1051/0004-6361/201731117

  17. A. Chacon-Tanarro, J.E.Pineda, P. Caselli, et al., Astron. Astrophys., 623, A118 (2019). https://doi.org/10.1051/0004-6361/201833385

    Article  Google Scholar 

  18. M. Galametz, A. J.Maury, V.Valdivia, et al., Astron. Astrophys., 632, A5 (2019). 10.1051/0004-6361/201936342

  19. Y.Tang, Q.D.Wang, and G.W.Wilson, Mon. Not. Roy. Astron. Soc., 505, No. 2, 2377–2391 (2021). https://doi.org/10.1093/mnras/staa3230

    Article  ADS  Google Scholar 

  20. H. Hirashita and H.Yan, Mon. Not. Roy. Astron. Soc., 394, No. 2, 1061–1074 (2009). https://doi.org/10.1111/j.1365-2966.2009.14405.x

    Article  ADS  Google Scholar 

  21. K. A. Marsh, A.P. Whitworth, O. Lomax, et al., Mon. Not. Roy. Astron. Soc., 471, No. 3, 2730–2742 (2017). https://doi.org/10.1093/mnras/stx1723

    Article  ADS  Google Scholar 

  22. L. Pirogov, I. Zinchenko, P. Caselli, et al., Astron. Astrophys., 405, 639–654 (2003). https://doi.org/10.1051/0004-6361:20030659

    Article  ADS  Google Scholar 

  23. L. Pirogov, I. Zinchenko, P. Caselli, and L.E.B. Johansson, Astron. Astrophys., 461, No. 2, 523–535 (2007). https://doi.org/10.1051/0004-6361:20054777

    Article  ADS  Google Scholar 

  24. M. A. Braz, J.C.Gregorio Hetem, E. J. Scalise, et al., Astron. Astrophys., 77, 465–469 (1989).

    ADS  Google Scholar 

  25. A. J.Walsh, A.R.Hyland, G.Robinson, and M. G. Burton, Mon. Not. Roy. Astron. Soc., 291, No. 2, 261–278 (1997). https://doi.org/10.1093/mnras/291.2.261

    Article  ADS  Google Scholar 

  26. A. J.Walsh, M. G. Burton, A.R.Hyland, and G.Robinson, Mon. Not. Roy. Astron. Soc., 301, No. 3, 640–698 (1998). https://doi.org/10.1046/j.1365-8711.1998.02014.x

    Article  ADS  Google Scholar 

  27. M.R.Pestalozzi, V.Minier, and R. S.Booth, Astron. Astrophys., 432, No. 2, 737–742 (2005). https://doi.org/10.1051/0004-6361:20035855

    Article  ADS  Google Scholar 

  28. T. Culverhouse, P.Ade, J. Bock, et al., Astrophys. J., 195, No. 1, 8 (2011). https://doi.org/10.1088/0067-0049/195/1/8

    Article  Google Scholar 

  29. I. Zinchenko, K. Mattila, and M.Toriseva, Astron. Astrophys., 111, 95-114 (1995).

    ADS  Google Scholar 

  30. I. Zinchenko, C.Henkel, and R. Q. Mao, Astron. Astrophys., 361, 1079–1094 (2000).

    ADS  Google Scholar 

  31. M. Juvela, Astron. Astrophys., 118, 191–226 (1996).

    ADS  Google Scholar 

  32. A.V. Lapinov, P. Schilke, M. Juvela, and I. I. Zinchenko, Astron. Astrophys., 336, 1007–1023 (1998).

    ADS  Google Scholar 

  33. J.Harju, K. Lehtinen, R. S.Booth, and I. Zinchenko, Astron. Astrophys., 132, 211–231 (1998). https://doi.org/10.1051/aas:1998448

    Article  ADS  Google Scholar 

  34. T. Liu, K. T. Kim, H.Yoo, et al., Astrophys. J., 829, No. 2, 59 (2016). 10.3847/0004-637X/829/2/59

  35. L. E. Pirogov, Astron. Rep., 53, No. 12, 1127–1135 (2009). https://doi.org/10.1134/S1063772909120051

    Article  ADS  Google Scholar 

  36. G. Siringo, E. Kreysa, C.De Breuck, et al., The Messenger, 139, 20–23 (2010).

    ADS  Google Scholar 

  37. G. Siringo, A.Kovacs, E.Kreysa, et al., in: W. S.Holland and J. Zmuidzinas, eds., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI. Ser. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 8452, 845206 (2012). 10.1117/12.925697

  38. https://sigmyne.com/crush/index.htm

  39. A.Kovacs, in: W. D. Duncan, W. S.Holland, S. Withington, and J.Zmuidzinas, eds., Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV. Ser. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 7020, 70201S (2008). 10.1117/12.790276

  40. http://simbad.u-strasbg.fr/simbad/

  41. https://vizier.u-strasbg.fr/viz-bin/VizieR

  42. D.A. Ladeyschikov, O. S.Bayandina, and A. M. Sobolev, Astron. J., 158, No. 6, 233 (2019). https://doi.org/10.3847/1538-3881/ab4b4c

    Article  ADS  Google Scholar 

  43. K.V. Getman, E.D. Feigelson, M.A.Kuhn, et al., Astron. J., 158, No. 6, 235 (2019). 10.3847/1538-3881/ab4d4a

  44. J. S.Urquhart, M. G.Hoare, S. L. Lumsden, et al., Astron. Astrophys., 507, No. 2, 795–802 (2009). https://doi.org/10.1051/0004-6361/200912608

    Article  ADS  Google Scholar 

  45. D.P. Smits, Mon. Not. Roy. Astron. Soc., 339, No. 1, 1–11 (2003). https://doi.org/10.1046/j.1365-8711.2003.06096.x

    Article  ADS  Google Scholar 

  46. J. L. Caswell, R. A.Vaile, S.P.Ellingsen, et al., Mon. Not. Roy. Astron. Soc., 272, No. 1, 96–138 (1995). https://doi.org/10.1093/mnras/272.1.96

  47. J. S. Urquhart, T. J.T.Moore, K. M. Menten, et al., Mon. Not. Roy. Astron. Soc., 446, No. 4, 3461–3477 (2015). https://doi.org/10.1093/mnras/stu2300

    Article  ADS  Google Scholar 

  48. B. Neichel, M.R. Samal, H. Plana, et al., Astron. Astrophys., 576, A110 (2015). https://doi.org/10.1051/0004-6361/201425464

    Article  Google Scholar 

  49. R. Ortiz, A.Roman-Lopes, and Z.Abraham, Astron. Astrophys., 461, No. 3, 949–955 (2007). https://doi.org/10.1051/0004-6361:20054507

    Article  ADS  Google Scholar 

  50. S. L. Breen and S.P.Ellingsen, Mon. Not. Roy. Astron. Soc., 416, No. 1, 178–204 (2011). https://doi.org/10.1111/j.1365-2966.2011.19020.x

    Article  ADS  Google Scholar 

  51. J. L. Caswell, Mon. Not. Roy. Astron. Soc., 352, No. 1, 101–111 (2004). https://doi.org/10.1111/j.1365-2966.2004.07901.x

    Article  ADS  Google Scholar 

  52. S. L. Breen, J. L.Caswell, S.P. Ellingsen, and C. J. Phillips, Mon. Not. Roy. Astron. Soc., 406, No. 3, 1487–1532 (2010). https://doi.org/10.1111/j.1365-2966.2010.16791.x

    Article  ADS  Google Scholar 

  53. P.J.Barnes, S.D.Ryder, S.N.O’Dougherty, et al., Mon. Not. Roy. Astron. Soc., 432, No. 3, 2231–2246 (2013). https://doi.org/10.1093/mnras/stt607

  54. C. Eswaraiah, S.P. Lai, W.P. Chen, et al., Astrophys. J., 850, No. 2, 195 (2017). https://doi.org/10.3847/1538-4357/aa917e

    Article  ADS  Google Scholar 

  55. M. A.Voronkov, J. L.Caswell, S.P. Ellingsen, et al., Mon. Not. Roy. Astron. Soc., 439, No. 3, 2584–2617 (2014). https://doi.org/10.1093/mnras/stu116

    Article  ADS  Google Scholar 

  56. S. L. Breen, Y.Contreras, J.R. Dawson, et al., Mon. Not. Roy. Astron. Soc., 484, No. 4, 5072–5093 (2019). https://doi.org/10.1093/mnras/stz192

    Article  ADS  Google Scholar 

  57. J. A. Green, J. L.Caswell, G. A. Fuller, et al., Mon. Not. Roy. Astron. Soc., 420, No. 4, 3108–3125 (2012). https://doi.org/10.1111/j.1365-2966.2011.20229.x

    Article  ADS  Google Scholar 

  58. J. L. Caswell, Publ. Astron. Soc. Australia, 26, No. 4, 454–467 (2009). https://doi.org/10.1071/AS09013

    Article  ADS  Google Scholar 

  59. E. J.Watkins, N.Peretto, K.Marsh, and G. A. Fuller, Astron. Astrophys., 628, A21 (2019). https://doi.org/10.1051/0004-6361/201935277

    Article  ADS  Google Scholar 

  60. J. L. Caswell, Mon. Not. Roy. Astron. Soc., 326, No. 2, 805–820 (2001). https://doi.org/10.1046/j.1365-8711.2001.04745.x

    Article  ADS  Google Scholar 

  61. J. L. Caswell, Mon. Not. Roy. Astron. Soc., 297, No. 1, 215–235 (1998). https://doi.org/10.1046/j.1365-8711.1998.01468.x

    Article  ADS  Google Scholar 

  62. M. Sadaghiani, A. Sanchez-Monge, P. Schilke, et al., Astron. Astrophys., 635, A2 (2020). https://doi.org/10.1051/0004-6361/201935699

    Article  Google Scholar 

  63. N. D. Kalinina, A. M. Sobolev, and S.V.Kalenskii, New Astron., 15, No. 7, 590–608 (2010). https://doi.org/10.1016/j.newast.2010.02.001

    Article  ADS  Google Scholar 

  64. A. Zernickel, P. Schilke, A. Schmiedeke, et al., Astron. Astrophys., 546, A87 (2012). https://doi.org/10.1051/0004-6361/201219803

    Article  Google Scholar 

  65. P.Persi, M.Roth, M.Tapia, et al., Astron. Astrophys., 282, 474–484 (1994).

    ADS  Google Scholar 

  66. J. O. Chibueze, T.Omodaka, T. Handa, et al., Astrophys. J., 784, No. 2, 114 (2014). https://doi.org/10.1088/0004-637X/784/2/114

    Article  ADS  Google Scholar 

  67. S. D. Doty and C.M. Leung, Astrophys. J., 424, No. 2, 729 (1994). https://doi.org/10.1086/173926

    Article  ADS  Google Scholar 

  68. V. Ossenkopf and T.Henning, Astron. Astrophys., 291, 943–959 (1994).

    ADS  Google Scholar 

  69. http://www.astro.cardiff.ac.uk/research/ViaLactea/

  70. K. A. Marsh, A.P. Whitworth, and O. Lomax, Mon. Not. Roy. Astron. Soc., 454, No. 4, 4282–4292 (2015). https://doi.org/10.1093/mnras/stv2248

    Article  ADS  Google Scholar 

  71. http://archives.esac.esa.int/hsa/whsa/

  72. https://sites.google.com/cfa.harvard.edu/saoimageds9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Pirogov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 12, pp. 954–970, December 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_12_954

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirogov, L.E. Dust Temperature Profiles in Dense Cores Related to the High-Mass Star-Forming Regions. Radiophys Quantum El 64, 857–872 (2022). https://doi.org/10.1007/s11141-022-10184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10184-1

Navigation