Skip to main content
Log in

Three Forms of Dynamical Chaos

  • Published:
Radiophysics and Quantum Electronics Aims and scope

This work is a review of recent results, which have been obtained within the framework of the mathematical theory of dynamical chaos and are related to the discovery of its third new form, the so-called mixed dynamics. This type of chaos considerably differs from its two classical forms, namely, conservative chaos and dissipative chaos, and the main difference is that attractors and repellers can intersect without coincidence. This work offers theoretical substantiation of this phenomenon without involving a serious mathematical apparatus and also provides a number of examples of the systems from applications in which the mixed dynamics is observed. We show that the mixed dynamics can be of different types, ranging from that close to conservative to the strongly dissipative one, and that it can result from various bifurcation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V.Gonchenko, D.V.Turaev, and L. P. Shilnikov, Proc. Steklov Inst. Math., 216, 70–118 (1997).

    Google Scholar 

  2. A. S. Gonchenko, S.V.Gonchenko, and A.O.Kazakov, Reg. Chaot. Dyn., 18, No. 5, 521–538 (2013). https://doi.org/https://doi.org/10.1134/S1560354713050055

  3. A. S. Gonchenko, S.V.Gonchenko, A. O. Kazakov, and E.A. Samylina, Radiophys. Quantum Electron., 61, No. 10, 773–786 (2019). https://doi.org/https://doi.org/10.1007/s11141-019-09935-4

  4. A. S. Gonchenko and E.A. Samylina, in: Int. Conf. “Shilnikov Workshop 2020,” December 17–18, 2020, Nizhny Novgorod, Russia, pp. 26–28.

  5. S.V.Gonchenko and D.V.Turaev, Proc. Steklov Inst. Math., 297, 116–137 (2017). https://doi.org/https://doi.org/10.1134/S0081543817040071

  6. D. Ruelle, Commun. Math. Phys., 82, No. 1, 137–151 (1981). https://doi.org/https://doi.org/10.1007/BF01206949

  7. A. O. Kazakov, Reg. Chaot. Dyn., 18, No. 5, 508–520 (2013). https://doi.org/https://doi.org/10.1134/S1560354713050043

  8. A. S. Gonchenko, S.V.Gonchenko, A. O. Kazakov, and D.V.Turaev, Physica D, 350, 45–57 (2017). https://doi.org/https://doi.org/10.1016/j.physd.2017.02.002

  9. S.P.Kuznetsov, Europhys. Lett., 118, No. 1, 10007 (2017). https://doi.org/https://doi.org/10.1209/0295-5075/118/10007

  10. A. O. Kazakov, Radiophys. Quantum Electron., 61, No. 8, 650–658 (2019). https://doi.org/https://doi.org/10.1007/s11141-019-09925-6

  11. A. Kazakov, Chaos, 30, No. 1, 011105 (2020). https://doi.org/https://doi.org/10.1063/1.5144144

  12. A. A. Emelianova and V. I. Nekorkin, Chaos, 29, No. 11, 111102 (2019). https://doi.org/https://doi.org/10.1063/1.5130994

  13. A. A. Emelianova and V. I. Nekorkin, Chaos, 30, No. 5, 051105 (2020). https://doi.org/https://doi.org/10.1063/5.0009525

  14. G. Ariel and J. Schiff, Physica D, 411, 132584 (2020). https://doi.org/https://doi.org/10.1016/j.physd.2020.132584

  15. V. Chigarev, A. Kazakov, and A. Pikovsky, Chaos, 30, No. 7 (2020). https://doi.org/https://doi.org/10.1063/5.0007230

  16. I. A. Bizyaev and I. S. Mamaev, J. Phys. A, 53, No. 18, 185701 (2020). https://doi.org/https://doi.org/10.1088/1751-8121/ab7e52

  17. I. A. Bizyaev and I. S. Mamaev, Int. J. Nonlin. Mech., 126, 103550 (2020). https://doi.org/https://doi.org/10.1016/j.ijnonlinmec.2020.103550

  18. S.P.Kuznetsov, V. P. Kruglov, and A.V.Borisov, Europhys. Lett., 132, 20008 (2020). https://doi.org/https://doi.org/10.1209/0295-5075/132/20008

  19. A. Pikovsky and D. Topaj, Physica D, 170, 118–130 (2002). https://doi.org/https://doi.org/10.1016/S0167-2789(02)00536-5

  20. S. Gonchenko, Discont. Nonlin. Compl., 5, No. 4, 365–374 (2016). https://doi.org/https://doi.org/10.5890/DNC.2016.12.003

  21. S.V.Gonchenko, A. S. Gonchenko, and A.O.Kazakov, Proc. Steklov Inst. Math., 308, 125–140 (2020). https://doi.org/https://doi.org/10.1134/S0081543820010101

  22. J. Milnor, Commun. Math. Phys., 99, No. 2, 177–195 (1985). https://doi.org/https://doi.org/10.1007/BF01212280

  23. S. S. Minkov, “Thick attractors and skew products,” Ph.D. Thesis [in Russian], Moscow (2016).

  24. C. C. Conley, Isolated Invariant Sets and the Morse Index., American Mathematical Soc., Providence (1978).

  25. M. Hurley, Am. Math. Soc., 269, No. 1, 247–271 (1982). https://doi.org/https://doi.org/10.1090/S0002-9947-1982-0637037-7

  26. D. V. Anosov and I.U.Bronshtein, Dynamical Systems [in Russian], VINITI, Moscow (1985), pp.224–227.

    Google Scholar 

  27. V. S. Afraimovich, V. V. Bykov and L.P. Shilnikov, Trans. Moscow Math. Soc., 44, 150–212 (1983).

    Google Scholar 

  28. D. V. Turaev and L.P. Shil’nikov, Sbornik Math., 189, No. 2, 291–314 (1998). https//doi.org/https://doi.org/10.1070/SM1998v189n02ABEH000300

  29. D. V. Turaev and L. P. Shil’nikov, Doklady Math., 77, No. 1, 17–21 (2008). https://doi.org/https://doi.org/10.1134/S1064562408010055

  30. S. V. Gonchenko, A.O.Kazakov, and D. Turaev, https://arxiv.org/abs/1809.07250

  31. A. S. Gonchenko, S.V.Gonchenko, A. O. Kazakov, and A.D.Kozlov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 25, No. 2, 4–36 (2017).

  32. A. S. Gonchenko, S.V.Gonchenko, A. O. Kazakov, and A.D.Kozlov, Int. J. Bifurc. Chaos, 28, No. 11, 1830036 (2018). https://doi.org/https://doi.org/10.1142/S0218127418300367

  33. S.V.Gonchenko, J. S.W. Lamb, I. Rios, and D. Turaev, Doklady Math., 89, No. 1, 65–67 (2014). https://doi.org/https://doi.org/10.1134/S10645624140/0207

  34. V. S. Afraimovich and L.P. Shilnikov, in: G. I. Barenblatt, G. Iooss, and D.D. Joseph, eds., Nonlinear Dynamics and Turbulence, Pitmen, Boston (1983), pp. 336–339.

  35. S.P.Kuznetsov, Dynamical Chaos and Hyperbolic Attractors. From Mathematics to Physics [in Russian], Inst. Computer Studies, Moscow–Izhevsk (2013).

  36. E. Lorenz, J. Atmos. Sci., 20, No. 2, 130–141 (1963). https://doi.org/https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

  37. S. V. Gonchenko, I. I. Ovsyannikov, C. Simo, and D. Turaev, Int. J. Bifurc. Chaos, 15, No. 11, 3493–3508 (2005). https://doi.org/https://doi.org/10.1142/S0218127405014180

  38. A. S. Gonchenko, S.V.Gonchenko, and L.P. Shilnikov, Nonlin. Din., 8, No. 1, 3–28 (2012).

    Article  Google Scholar 

  39. S.V.Gonchenko, A. S. Gonchenko, I. I. Ovsyannikov, and D.V.Turaev, Math. Model. Nat. Phenom., 8, No. 5, 48–70 (2013). https://doi.org/https://doi.org/10.1051/mmnp/20138504

  40. A. S. Gonchenko, S.V.Gonchenko, A. O. Kazakov, and D.V.Turaev, Int. J. Bif. Chaos, 24, No. 8, 1440005 (2014). https://doi.org/https://doi.org/10.1142/S0218127414400057

  41. A. S. Dmitriev, Yu. A. Komlev, and D. V. Turaev, Int. J. Bifurc. Chaos, 2, No. 1, 93–100 (1992). https://doi.org/https://doi.org/10.1142/S0218127492000094

  42. J. S. W. Lamb and J.A.G.Roberts, Physica D, 112, Nos. 1–2, 1–39 (1998).https://doi.org/https://doi.org/10.1016/S0167-2789(97)00199-1

  43. V. Rom-Kedar and S. Wiggins, Arch. Ration. Mech. Anal., 109, No. 3, 239–298 (1990). https://doi.org/https://doi.org/10.1007/BF00375090

  44. M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Springer, London (2011), pp. 239–278.

    Book  Google Scholar 

  45. L. M. Lerman and D. Turaev, Reg. Chaot. Dyn., 17, Nos. 3–4, 318–336 (2012). https://doi.org/https://doi.org/10.1134/S1560354712030082

  46. J. S. W. Lamb and O.V. Stenkin, Nonlinearity, 17, No. 4, 1217–1244 (2004). https://doi.org/https://doi.org/10.1088/0951-7715/17/4/005

  47. A. P. Markeev, Dynamics of a Body in Contact with a Solid Surface [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  48. A.V.Borisov and I. S. Mamaev, eds., Nonholonomic Dynamical Systems. Integrability, Chaos, and Strange Attractors, Inst. Computer Studies, Moscow–Izhevsk (2002).

  49. A. V. Borisov and I. S. Mamaev, Phys. Usp., 46, No. 4, 393–403 (2003). DOI: https://doi.org/10.1070/PU2003v046n04ABEH001306

    Article  ADS  Google Scholar 

  50. A. V. Karapetian, J. Appl. Math. Mech., 45, No. 5, 604–608 (1982). https://doi.org/https://doi.org/10.1016/0021-8928(81)90140-4

  51. S. P. Kuznetsov, A.Yu. Zhalnin, I.R. Sataev, and Yu.V. Sedova, Nelin. Din., 8, No. 4, 735–762 (2012).

    Article  Google Scholar 

  52. M. Hénon, Commun. Math. Phys., 50, 69–77 (1976). https://doi.org/https://doi.org/10.1007/BF01608556

  53. V. V. Kozlov, Usp. Mekh., 8, No. 3, 85–107 (1985).

    Google Scholar 

  54. I. A. Bizyaev, A. V. Borisov, and A.O.Kazakov, Reg. Chaot. Dyn., 20, No. 5, 605–626 (2015). https://doi.org/https://doi.org/10.1134/S1560354715050056

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gonchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 9–10, pp. 840–862, September–October 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonchenko, S.V. Three Forms of Dynamical Chaos. Radiophys Quantum El 63, 756–775 (2021). https://doi.org/10.1007/s11141-021-10094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10094-8

Navigation