Skip to main content

The Lorenz Attractor, a Paradigm for Chaos

  • Chapter
  • First Online:
Chaos

Part of the book series: Progress in Mathematical Physics ((PMP,volume 66))

Abstract

It is very unusual for a mathematical or physical idea to disseminate into the society at large. An interesting example is chaos theory, popularized by Lorenz’s butterfly effect: “does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” A tiny cause can generate big consequences! Mathematicians (and non mathematicians) have known this fact for a long time! Can one adequately summarize chaos theory is such a simple minded way? In this review paper, I would like first of all to sketch some of the main steps in the historical development of the concept of chaos in dynamical systems, from the mathematical point of view. Then, I would like to present the present status of the Lorenz attractor in the panorama of the theory, as we see it Today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abraham and S. Smale, Nongenericity of Ω-stability. Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) pp. 5–8 Amer. Math. Soc., Providence, R.I. 1970.

    Google Scholar 

  2. V.S. Afraimovich, V.V. Bykov and L.P. Shil’nikov, The origin and structure of the Lorenz attractor. (En russe), Dokl. Akad. Nauk SSSR 234 no. 2, 336–339 (1977).

    Google Scholar 

  3. D.V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature. (En russe), Dokl. Akad. Nauk SSSR 145, 707–709 (1962).

    MathSciNet  Google Scholar 

  4. D.V. Anosov, Dynamical systems in the 1960s: the hyperbolic revolution. Mathematical events of the twentieth century, 1–17, Springer, Berlin, 2006.

    Google Scholar 

  5. A. Andronov. and L. Pontrjagin, Systèmes grossiers. Dokl. Akad. Nauk SSSR 14 (1937).

    Google Scholar 

  6. V. Araújo, E.R. Pujals, M.J. Pacifico and M. Viana, Singular-hyperbolic attractors are chaotic. Transactions of the A.M.S. 361, 2431–2485 (2009).

    Google Scholar 

  7. V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier 16 no. 1, 319–361 (1966).

    Google Scholar 

  8. D. Aubin and A. Dahan Dalmedico, Writing the history of dynamical systems and chaos: longue durée and revolution, disciplines and cultures. Historia Math. 29 no. 3, 273–339 (2002).

    Google Scholar 

  9. A. Arroyo and E. Pujals, Dynamical properties of singular-hyperbolic attractors. Discrete Contin. Dyn. Syst. 19 no. 1, 67–87 (2007).

    Google Scholar 

  10. A. Arroyo and F. Rodriguez Hertz, Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 no. 5, 805–841 (2003).

    Google Scholar 

  11. J. Barrow-Green, Poincaré and the three body problem. History of Mathematics, 11. American Mathematical Society, Providence, RI; London Mathematical Society, London, 1997. xvi+272 pp.

    Google Scholar 

  12. F. Béguin, Le mémoire de Poincaré pour le prix du roi Oscar. In L’ héritage scientifique de Poincaré, éd. Charpentier, Ghys, Lesne, éditions Belin 2006.

    Google Scholar 

  13. G.D. Birkhoff, Nouvelles recherches sur les systèmes dynamiques. Mem. Pont. Acad. Sci. Nov. Lyncaei 53, 85–216 (1935).

    Google Scholar 

  14. J. Birman and I. Kofman, A new twist on Lorenz links. J. Topol. 2 no. 2, 227–248 (2009).

    Google Scholar 

  15. J. Birman and R.F. Williams, Knotted periodic orbits in dynamical systems, I. Lorenz’s equations. Topology 22 no. 1, 47–82 (1983).

    Google Scholar 

  16. C. Bonatti, L. Díaz and M. Viana, Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, III. Springer-Verlag, Berlin, 2005.

    Google Scholar 

  17. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics 470, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  18. R. Bowen, On Axiom A diffeomorphisms. Regional Conference Series in Mathematics, No. 35. American Mathematical Society, Providence, R.I., 1978. vii+45 pp.

    Google Scholar 

  19. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows. Invent. Math. 29 no. 3, 181–202 (1975).

    Google Scholar 

  20. G.L. Buffon, Du Soufre. Histoire Naturelle des minéraux, tome 2, 1783.

    Google Scholar 

  21. L.A. Bunimovich, Statistical properties of Lorenz attractors. Nonlinear dynamics and turbulence, Pitman, p. 7192, 1983.

    Google Scholar 

  22. P. Dehornoy, Les noeuds de Lorenz. to be published in L’Enseignement mathématique, arXiv:0904.2437

    Google Scholar 

  23. P. Duhem, La théorie physique; son objet, sa structure. 1906. English transl. by P.P. Wiener, The aim and structure of physical theory, Princeton University Press, 1954.

    Google Scholar 

  24. S. Galatolo and M.J. Pacifico, Lorenz-like flows: exponential decay of correlations for the Poincaré map, logarithm law, quantitative recurrence. Ergod. Th. Dynam. Sys. 30, 1703–1737 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Ghrist, Branched two-manifolds supporting all links. Topology 36 no. 2, 423–448 (1997).

    Google Scholar 

  26. E. Ghys, Knots and dynamics. International Congress of Mathematicians. Vol. I, pp. 247–277, Eur. Math. Soc., Z¨urich, 2007.

    Google Scholar 

  27. E. Ghys, Right-handed vector fields & the Lorenz attractor. Jpn. J. Math 4 no. 1, 47–61 (2009).

    Google Scholar 

  28. E. Ghys and J. Leys, Lorenz and modular flows: a visual introduction. American Math. Soc. Feature Column, November 2006, www.ams.org/featurecolumn/archive/lorenz.html

  29. J. Gleick, Chaos: Making a New Science. Viking Penguin, 1987.

    Google Scholar 

  30. M. Gromov, Three remarks on geodesic dynamics and fundamental group. Enseign. Math. 46 no. 3–4, 391–402 (2002).

    Google Scholar 

  31. J. Guckenheimer, A strange, strange attractor. In The Hopf Bifurcation, Marsden and McCracken, eds. Appl. Math. Sci., Springer-Verlag, (1976).

    Google Scholar 

  32. J. Guckenheimer, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Amer. Math. Monthly 91 no. 5, 325–326 (1984).

    Google Scholar 

  33. J. Guckenheimer and R.F. Williams, Structural stability of Lorenz attractors. Inst. Hautes études Sci. Publ. Math. 50, 59–72 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodésiques. Journal de mathématiques pures et appliquées 5e série 4, 27–74 (1898).

    Google Scholar 

  35. J.T. Halbert and J.A. Yorke, Modeling a chaotic machine’s dynamics as a linear map on a “square sphere” . http://www.math.umd.edu/ halbert/taffy-paper-1.pdf

  36. B. Hasselblatt, Hyperbolic dynamical systems. Handbook of dynamical systems, Vol. 1A, pp. 239–319, North-Holland, Amsterdam, 2002.

    Google Scholar 

  37. M. Holland and I. Melbourne, Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2) 76 no. 2, 345–364 (2007).

    Google Scholar 

  38. J.-P. Kahane, Hasard et déterminisme chez Laplace. Les Cahiers Rationalistes 593 – mars–avril 2008.

    Google Scholar 

  39. S. Kuznetsov, Plykin-type attractor in nonautonomous coupled oscillators. Chaos 19, 013114 (2009).

    Article  MathSciNet  Google Scholar 

  40. O. Lanford, An introduction to the Lorenz system. Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Paper No. 4, i+21 pp. Duke Univ. Math. Ser., Vol. III, Duke Univ., Durham, N.C., 1977.

    Google Scholar 

  41. P.S. Laplace, Essai philosophique sur les probabilités. 1814. English transl. by A.I. Dale, Philosophical essay on probabilities, Springer, 1995

    Google Scholar 

  42. E.N. Lorenz, Maximum simplification of the dynamic equations. Tellus 12, 243–254 (1960).

    Article  Google Scholar 

  43. E.N. Lorenz, The statistical prediction of solutions of dynamic equations. Proc. Internat. Sympos. Numerical Weather Prediction, Tokyo, pp. 629–635.

    Google Scholar 

  44. E.N. Lorenz, Deterministic non periodic flow. J. Atmosph. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  45. E.N. Lorenz, Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? 139th Annual Meeting of the American Association for the Advancement of Science (29 Dec. 1972), in Essence of Chaos (1995), Appendix 1, 181.

    Google Scholar 

  46. S. Luzzatto, I. Melbourne and F. Paccaut, The Lorenz attractor is mixing. Comm. Math. Phys. 260 no. 2, 393–401 (2005).

    Google Scholar 

  47. R. Mañé, An ergodic closing lemma. Ann. of Math. 116 no. 3, 503–540 (1982).

    Google Scholar 

  48. J.C. Maxwell, Matter and Motion. 1876, rééd. Dover (1952).

    Google Scholar 

  49. C.A. Morales, M.J. Pacifico and E.R. Pujals, Robust transitive singular sets for 3- flows are partially hyperbolic attractors or repellers. Ann. of Math. 160 no. 2, 375–432 (2004).

    Google Scholar 

  50. H.M. Morse, A one-to-one representation of geodesics on a surface of negative curvature. Amer. J. Math. 43 no. 1, 33–51 (1921).

    Google Scholar 

  51. J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors. Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque No. 261 (2000), xiii–xiv, pp. 335–347.

    Google Scholar 

  52. J. Palis, A global perspective for non-conservative dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 no. 4, 485–507 (2005).

    Google Scholar 

  53. J. Palis, Open questions leading to a global perspective in dynamics. Nonlinearity 21 no. 4, T37–T43 (2008).

    Google Scholar 

  54. J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge Studies in Advanced Mathematics, 35. Cambridge University Press, Cambridge, 1993. x+234 pp.

    Google Scholar 

  55. M. Peixoto, Structural stability on two-dimensional manifolds. Topology 1, 101–120 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  56. Ya.B. Pesin, Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergodic Theory Dynam. Systems 12 no. 1, 123– 151 (1992).

    Google Scholar 

  57. H. Poincaré, Mémoire sur les courbes définies par une équation différentielle. Journal de mathématiques pures et appliquées 7, 375–422 (1881).

    MATH  Google Scholar 

  58. H. Poincaré, Sur le problème des trois corps et les équations de la dynamique. Acta Mathematica 13, 1–270 (1890).

    MATH  Google Scholar 

  59. H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris, vol. 3, (1892–1899). English transl. New methods of celestial mechanics, D.L. Goroff (ed.), American Institute of Physics, 1993

    Google Scholar 

  60. H. Poincaré, Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc. 6, 237–274 (1905).

    Article  MathSciNet  MATH  Google Scholar 

  61. H. Poincaré, Le hasard. Revue du Mois 3, 257–276 (1907).

    Google Scholar 

  62. H. Poincaré, Science et méthode. Flammarion, (1908). English transl. by F. Maitland, Science and Method, T. Nelson and Sons, London, 1914.

    Google Scholar 

  63. A. Robadey, Différentes modalités de travail sur le général dans les recherches de Poincaré sur les systèmes dynamiques. Thèse, Paris 7, 2005.

    Google Scholar 

  64. R. Robert, L’effet papillon n’existe plus! Gaz. Math. 90, 11–25 (2001).

    MATH  Google Scholar 

  65. D. Ruelle, The Lorenz attractor and the problem of turbulence. Turbulence and Navier–Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975), pp. 146–158, Lecture Notes in Math., 565, Springer, Berlin, (1976).

    Google Scholar 

  66. D. Ruelle, A measure associated with axiom-A attractors, Amer. J. Math. 98 no. 3, 619–654 (1976).

    Google Scholar 

  67. D. Ruelle and F. Takens, On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  68. L.P. Shil’nikov, Homoclinic trajectories: from Poincaré to the present. Mathematical events of the twentieth century, 347–370, Springer, Berlin, 2006.

    Google Scholar 

  69. M. Shub, What is \( \ldots \) a horseshoe?, Notices Amer. Math. Soc. 52 no. 5, 516–517 (2005).

    Google Scholar 

  70. M. Shub, et S. Smale, Beyond hyperbolicity. Ann. of Math. (2) 96, 587–591(1972).

    Google Scholar 

  71. Ja.G. Sinai, Gibbs measures in ergodic theory. (En russe), Uspehi Mat. Nauk 27, no. 4(166), 21–64 (1972).

    Google Scholar 

  72. S. Smale, On dynamical systems. Bol. Soc. Mat. Mexicana 5, 195–198 (1960).

    MathSciNet  MATH  Google Scholar 

  73. S. Smale, A structurally stable differentiable homeomorphism with an infinite number of periodic points. Qualitative methods in the theory of non-linear vibrations (Proc. Internat. Sympos. Non-linear Vibrations, Vol. II, 1961) pp. 365–366 Izdat. Akad. Nauk Ukrain. SSR, Kiev 1963.

    Google Scholar 

  74. S. Smale, Diffeomorphisms with many periodic points. Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) pp. 63–80, Princeton Univ. Press, Princeton, N.J. 1965.

    Google Scholar 

  75. S. Smale, Structurally stable systems are not dense. Amer. J. Math. 88, 491–496 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  76. S. Smale, Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  77. S. Smale, Finding a horseshoe on the beaches of Rio. Math. Intelligencer 20 no. 1, 39–44 (1998).

    Google Scholar 

  78. S. Smale, Mathematical problems for the next century. Math. Intelligencer 20 no. 2, 7–15 (1998).

    Google Scholar 

  79. C. Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors. Applied Mathematical Sciences, 41. Springer-Verlag, New York-Berlin, (1982).

    Google Scholar 

  80. W. Tucker, A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2 \( \spadesuit \), no. 1, 53–117 (2002).

    Google Scholar 

  81. M. Viana, What’s new on Lorenz strange attractors? Math. Intelligencer 22 no. 3, 6–19 (2000).

    Google Scholar 

  82. R.F. Williams, The structure of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 73–99 (1979).

    Article  MATH  Google Scholar 

  83. R.F. Williams, Lorenz knots are prime. Ergodic Theory Dynam. Systems 4 no. 1, 147–163 (1984).

    Google Scholar 

  84. L.S. Young, What are SRB measures, and which dynamical systems have them? . Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. J. Statist. Phys. 108 no. 5–6, 733–754 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Ghys, É. (2013). The Lorenz Attractor, a Paradigm for Chaos. In: Duplantier, B., Nonnenmacher, S., Rivasseau, V. (eds) Chaos. Progress in Mathematical Physics, vol 66. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0697-8_1

Download citation

Publish with us

Policies and ethics