Skip to main content

Chaos

  • Chapter
  • First Online:
Nonlinearities in Economics

Abstract

In this chapter, we first precise the concept of dynamical systems, and then we introduce the concept of chaos, which is characterized by a sensitive dependence on initial conditions. To quantify this, dynamical (Lyapunov exponents) and probabilistic (dimensions) measures are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. List of fractals by Hausdorff dimension—Wikipedia (2019). https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension. Accessed 31 Jul 2019

  2. Alligood, K., Sauer, T., Yorke, J.: Chaos: An Introduction to Dynamical Systems. Textbooks in Mathematical Sciences. Springer, New York (2000)

    Google Scholar 

  3. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s Definition of Chaos. Amer. Math. Monthly 99, 332–334 (1992). https://doi.org/10.2307/2324899

    Article  Google Scholar 

  4. Beck, C., Schögl, F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge (1993). https://doi.org/10.1017/CBO9780511524585

    Book  Google Scholar 

  5. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Lyapunov exponents. In: Chaos: Classical and Quantum, chap. 6. Niels Bohr Institute, Copenhagen (2012). http://ChaosBook.org/version14ChaosBook.org/version14

  6. Eckmann, J.P., Procaccia, I.: Fluctuations of dynamical scaling indices in nonlinear systems. Phys. Rev. A 34, 659–661 (1986). https://doi.org/10.1103/PhysRevA.34.659

    Article  Google Scholar 

  7. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  Google Scholar 

  8. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983). https://doi.org/10.1103/PhysRevA.28.2591

    Article  Google Scholar 

  9. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D 9, 189–208 (1983)

    Article  Google Scholar 

  10. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986). https://doi.org/10.1103/PhysRevA.33.1141

    Article  Google Scholar 

  11. Horita, T., Hata, H., Mori, H., Morita, T., Tomita, K.: Singular local structures of chaotic attractors due to collisions with unstable periodic orbits in two-dimensional maps. Progr. Theor. Phys. 80(6), 923–928 (1988). https://doi.org/10.1143/PTP.80.923

    Article  Google Scholar 

  12. Jayawardena, A., Xu, P., Li, W.K.: Modified correlation entropy estimation for a noisy chaotic time series. Chaos 20(2), 023104 (2010)

    Article  Google Scholar 

  13. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  Google Scholar 

  14. Lorenz, H.W.: Nonlinear Dynamical Economics and Chaotic Motion, 2nd edn. edn. Springer, Berlin (1993)

    Google Scholar 

  15. Oono, Y., Takahashi, Y.: Chaos, external noise and fredholm theory. Progr. Theor. Phys. 63(5), 1804–1807 (1980). https://doi.org/10.1143/PTP.63.1804

    Article  Google Scholar 

  16. Ott, E.: Attractor dimensions. Scholarpedia 3(3), 2110 (2008). https://doi.org/10.4249/scholarpedia.2110. Revision #91015

  17. Peinke, J., Parisi, J., Rössler, O.E., Stoop, R.: Encounter with Chaos: Self-Organized Hierarchical Complexity in Semiconductor Experiments. Springer, Berlin (2012)

    Google Scholar 

  18. Pesin, Y.B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32, 55–114 (1977). https://doi.org/10.1070/RM1977v032n04ABEH001639

    Article  Google Scholar 

  19. Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  20. Sano, M., Sato, S., Sawada, Y.: Global spectral characterization of chaotic dynamics. Progr. Theor. Phys. 76(4), 945–948 (1986). https://doi.org/10.1143/PTP.76.945

    Article  Google Scholar 

  21. Sivakumar, B., Berndtsson, R.: Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting, chap. 9, pp. 411–461. World Scientific, Singapore (2010)

    Google Scholar 

  22. Stoop, R.: Dependence of phase transitions on small changes. Phys. Rev. E 47, 3927–3931 (1993). https://doi.org/10.1103/PhysRevE.47.3927

    Article  Google Scholar 

  23. Stoop, R.: On hyberbolic elements hiding phase transitions. Phys. Lett. A 173(4), 369–372 (1993). https://doi.org/10.1016/0375-9601(93)90252-U

    Article  Google Scholar 

  24. Stoop, R.: Bivariate thermodynamic formalism and anomalous diffusion. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 4913–4918 (1994). https://doi.org/10.1103/physreve.49.4913

    Google Scholar 

  25. Stoop, R.: The diffusion-related entropy function: the enhanced case. Europhys. Lett. 29(6), 433–438 (1995). https://doi.org/10.1209/0295-5075/29/6/001

    Article  Google Scholar 

  26. Stoop, R.: Thermodynamic approach to deterministic diffusion of mixed enhanced-dispersive type. Phys. Rev. E 52, 2216–2219 (1995). https://doi.org/10.1103/PhysRevE.52.2216

    Article  Google Scholar 

  27. Stoop, R., Gomez, F.: Auditory power-law activation avalanches exhibit a fundamental computational ground state. Phys. Rev. Lett. 117, 038102 (2016). https://doi.org/10.1103/PhysRevLett.117.038102

    Article  Google Scholar 

  28. Stoop, R., Peinke, J., Parisi, J., Röhricht, B., Huebener, R.: A p-Ge semiconductor experiment showing chaos and hyperchaos. Phys. D: Nonlinear Phenom. 35(3), 425–435 (1989)

    Article  Google Scholar 

  29. Szépfalusy, P., Tél, T.: New approach to the problem of chaotic repellers. Phys. Rev. A 34, 2520–2523 (1986). https://doi.org/10.1103/PhysRevA.34.2520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Orlando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orlando, G., Stoop, R., Taglialatela, G. (2021). Chaos. In: Orlando, G., Pisarchik, A.N., Stoop, R. (eds) Nonlinearities in Economics. Dynamic Modeling and Econometrics in Economics and Finance, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-70982-2_6

Download citation

Publish with us

Policies and ethics