Skip to main content
Log in

Complex Dynamic Thresholds and Generation of the Action Potentials in the Neural-Activity Model

  • Published:
Radiophysics and Quantum Electronics Aims and scope

This work is devoted to studying the processes of activation of the neurons whose excitation thresholds are not constant and vary in time (the so-called dynamic thresholds). The neuron dynamics is described by the FitzHugh–Nagumo model with nonlinear behavior of the recovery variable. The neuron response to the external pulsed activating action in the presence of a slowly varying synaptic current is studied within the framework of this model. The structure of the dynamic threshold is studied and its properties depending on the external-action parameters are established. It is found that the formation of the “folds” in the separatrix threshold manifold in the model phase space is a typical feature of the complex dynamic threshold. High neuron sensitivity to the action of the comparatively weak slow control signals is established. This explains the capability of the neurons to perform flexible tuning of their selective properties for detecting various external signals in sufficiently short times (of the order of duration of several spikes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. FitzHugh, Bull. Math. Biophys., 17, No. 4, 257 (1955).

    Article  Google Scholar 

  2. R. F. Schmidt and G. Thews, eds., Human Physiology, Springer-Verlag, New York (1989).

    Google Scholar 

  3. M. Desroches, M. Krupa, and S. Rodrigues, J. Math. Biol., 67, No. 4, 989 (2013).

    Article  MathSciNet  Google Scholar 

  4. N. Brunel and M. C. W. van Rossum, Biol. Cybern., 97, Nos. 5–6, 341 (2007).

  5. N. Brunel and M. C. W. van Rossum, Biol. Cybern., 97, Nos. 5–6, 337 (2007).

  6. R. Stein, Biophys. J., 5, No. 2, 173 (1965).

    Article  ADS  Google Scholar 

  7. R. Brette and W. Gerstner, J. Neurophysiol., 94, No. 5, 3637 (2005).

    Article  Google Scholar 

  8. J. Benda, L. Maler, and A. Longtin, J. Neurophysiol., 104, No. 5, 2806 (2010).

    Article  Google Scholar 

  9. H. Taschenberger and H. von Gersdorff, J. Neurosci., 20, No. 24, 9162 (2000).

    Google Scholar 

  10. A. Klug and L. O. Trussell, J. Neurophysiol., 96, No. 3, 1547 (2006).

    Article  Google Scholar 

  11. A. L. Hodgkin and A. F. Huxley, J. Physiol., 117, No. 4, 500 (1952).

    Article  Google Scholar 

  12. J. L. Hindmarsh and R. M. Rose, Nature, 296, 162 (1982).

    Article  ADS  Google Scholar 

  13. J. L. Hindmarsh and R. M. Rose, Proc. Roy. Soc. Lond. B. Biol. Sci., 221, No. 1222, 87 (1984).

    Article  ADS  Google Scholar 

  14. C. Morris and H. Lecar, Biophys. J., 35, No. 1, 193 (1981).

    Article  ADS  Google Scholar 

  15. R. FitzHugh, Biophys. J., 1, No. 6, 445 (1961).

    Article  ADS  Google Scholar 

  16. J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE, 50, No. 10, 2061 (1962).

    Article  Google Scholar 

  17. L. E. Abbott and T. B. Kepler, in: L. Garrido, ed., Statistical Mechanics of Neural Networks, Lecture Notes in Physics, Springer, Berlin (1990).

  18. V. I. Nekorkin, A. S. Dmitrichev, D. S. Shchapin, and V. B. Kazantsev, Mat. Model., 17, No. 6, 75 (2005).

    MathSciNet  Google Scholar 

  19. V. B. Kazantsev, Phys. Rev. E, 64, No. 5, 056210 (2001).

    Article  ADS  Google Scholar 

  20. S. Binczak, V. B. Kazantsev, V. I. Nekorkin, and J. M. Bilbault, Electron. Lett., 39, No. 13, 961 (2003).

    Article  Google Scholar 

  21. S. Binczak, S. Jacquir, J. M. Bilbault, et al., Neur. Net., 19, No. 5, 684 (2006).

    Article  Google Scholar 

  22. R. Azouz and C. M. Gray, Proc. Natl. Acad. Sci. USA, 97, No. 14, 8110 (2000).

    Article  ADS  Google Scholar 

  23. D. A. Henze and G. Buzsaki, Neuroscience, 105, No. 1, 121 (2001).

    Article  Google Scholar 

  24. W. B. Wilent and D. Contreras, J. Neurosci., 25, No. 11, 2983 (2005).

    Article  Google Scholar 

  25. G. Daoudal and D. Debanne, Learn. Mem., 10, No. 6, 456 (2003).

    Article  Google Scholar 

  26. J. Platkiewicz and R. Brette, PLoS Comput. Biol., 7, No. 5, 1001129 (2003).

    Article  MathSciNet  Google Scholar 

  27. M. H. Higgs and W. J. Spain, J. Physiol., 589, No. 21, 5125 (2011).

    Article  Google Scholar 

  28. B. Fontaine, J. L. Pen, and R. Brette, PLoS Comput. Biol., 10, No. 4, 1003560 (2014).

    Article  ADS  Google Scholar 

  29. J. Platkiewicz and R. Brette, PLoS Comput. Biol., 6, No. 7, 1000850 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  30. K. J. Bender and L. O. Trussell, Neuron., 61, No. 2, 259 (2009).

    Article  Google Scholar 

  31. M. S. Grubb, Y. Shu, H. Kuba, et al., J. Neurosci., 31, No. 45, 16049 (2011).

    Article  Google Scholar 

  32. J. Mitry, M. McCarthy, N. Kopell, and M. Wechselberger, J. Math. Neurosci., 3, No. 12, 1 (2013).

    MathSciNet  Google Scholar 

  33. M. M. McCarthy and N. Kopell, SIAM J. Appl. Dyn. Syst., 11, No. 4, 1674 (2012).

    Article  Google Scholar 

  34. A. Tonnelier, Phys. Rev. E, 90, No. 2, 022701 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  35. V. B. Kazantsev, A. S. Tchakoutio Nguetcho, S. Jacquir, et al., Neurocomputing, 83, 205 (2012).

    Article  Google Scholar 

  36. S. Yu. Kirillov and V. I. Nekorkin, Radiophys. Quantum Electron., 56, No. 1, 36 (2013).

    Article  ADS  Google Scholar 

  37. S. Yu. Kirillov and V. I. Nekorkin, Radiophys. Quantum Electron., 57, No. 11, 837 (2014).

    Article  ADS  Google Scholar 

  38. S. M. Baer, T. Erneux, and J. Rinzel, SIAM J. Appl. Math., 49, No. 1, 55 (1989).

    Article  MathSciNet  Google Scholar 

  39. E. Benoit, Dynamic Bifurcations, Lecture Notes in Mathematics, Springer, Berlin (1991).

  40. A. I. Neishtadt, C. Simo, and D. V. Treschev, Prog. Nonlin., 19, 253 (1996).

    MathSciNet  Google Scholar 

  41. A. I. Neishtadt and V. V. Sidorenko, J. Appl. Math. Mech., 61, No. 1, 15 (1997).

    Article  MathSciNet  Google Scholar 

  42. P. Greengard, Science, 294, No. 5544, 1 (2001).

    Article  Google Scholar 

  43. A. A. Andronov, A. A. Vitt, and S. É. Khaikin, Theory of Oscillations [in Russian], Fizmatgiz, Moscow (1959).

  44. E. F. Mishchenko and N. Kh. Rozov, Differential Equations with a Small Parameter and Relaxation Oscillations [in Russian], Nauka, Moscow (1975).

  45. Yu. S. Il’yashenko, Selected Problems in the Theory of Dynamical Systems [in Russian], MTsNMO, Moscow (2011).

  46. N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics, Ukrainian SSR Acad. Sci., Kiev (1937).

  47. A. N. Tikhonov, Mat. Sbornik, 31, No. 3, 575 (1952).

    MathSciNet  Google Scholar 

  48. D. V. Anosov, Mat. Sbornik, 50, No. 3, 299 (1979).

    MathSciNet  Google Scholar 

  49. N. Fenichel, J. Diff. Eq., 31, No. 1, 53 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  50. I. Song and R. L. Huganir, Trends Neurosci., 25, No. 11, 578 (2002).

    Article  Google Scholar 

  51. L. F. Abbott and W. G. Regehr, Nature, 431, 796 (2004).

    Article  ADS  Google Scholar 

  52. S. Thorpe, A. Delorme, and R. van Rullen, Neur. Net., 14, Nos. 6–7, 715 (2001).

  53. S. Katai, K. Kato, S. Unno, et al., Eur. J. Neurosci., 31, 1322 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Kirillov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 58, No. 12, pp. 1062–1082, December 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, S.Y., Nekorkin, V.I. Complex Dynamic Thresholds and Generation of the Action Potentials in the Neural-Activity Model. Radiophys Quantum El 58, 951–969 (2016). https://doi.org/10.1007/s11141-016-9668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9668-8

Navigation