Skip to main content
Log in

Inflection, canards and excitability threshold in neuronal models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A technique is presented, based on the differential geometry of planar curves, to evaluate the excitability threshold of neuronal models. The aim is to determine regions of the phase plane where solutions to the model equations have zero local curvature, thereby defining a zero-curvature (inflection) set that discerns between sub-threshold and spiking electrical activity. This transition can arise through a Hopf bifurcation, via the so-called canard explosion that happens in an exponentially small parameter variation, and this is typical for a large class of planar neuronal models (FitzHugh–Nagumo, reduced Hodgkin–Huxley), namely, type II neurons (resonators). This transition can also correspond to the crossing of the stable manifold of a saddle equilibrium, in the case of type I neurons (integrators). We compute inflection sets and study how well they approximate the excitability threshold of these neuron models, that is, both in the canard and in the non-canard regime, using tools from invariant manifold theory and singularity theory. With the latter, we investigate the topological changes that inflection sets undergo upon parameter variation. Finally, we show that the concept of inflection set gives a good approximation of the threshold in both the so-called resonator and integrator neuronal cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Benoît E, Callot JL, Diener F, Diener M (1981) Chasse au canard. Collect Math (31–32):37–119

    Google Scholar 

  • Brøns M (1988) Bifurcations and instabilities in the Greitzer model for compressor system surge. Eng Ind 2(1):51–63

    Google Scholar 

  • Brøns M (1989) Canards and excitation in Liénard equations. MAT-REPORT 1989–22, Mathematical Institute, Technical University of Denmark

  • Brøns M, Bar-Eli K (1991) Canard explosion and excitation in a model of the Belousov–Zhabotinskii reaction. J Phys Chem 95:8706–8713

    Article  Google Scholar 

  • Brøns M, Bar-Eli K (1994) Asymptotic analysis of canards in the EOE equations and the role of the inflection line. Proc Math Phys Sci 445:305–322

    Article  Google Scholar 

  • Bruce J, Giblin P (1992) Curves and singularities: a geometrical introduction to singularity theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Desroches M, Jeffrey MR (2011) Canards and curvature: the “smallness” of \(\varepsilon \) in slow-fast dynamics. Proc R Soc Lond A 467:2404–2421

    Article  MathSciNet  MATH  Google Scholar 

  • Destexhe A, Bal T (2009) Dynamic-clamp: from principles to applications. Springer, Berlin

    Google Scholar 

  • Eckhaus W (1983) Relaxation oscillations including a standard chase on French ducks. In: Verhulst F (ed) Asymptotic analysis II. Lecture notes in mathematics, vol 985. Springer, New York, pp 449–494

  • Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31(1):53–98

    Article  MathSciNet  MATH  Google Scholar 

  • Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  Google Scholar 

  • Ginoux JM, Rossetto B (2006) Differential geometry and mechanics: applications to chaotic dynamical systems. Int J Bifurc Chaos Appl Sci Eng 16(4):887

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky M, Schaeffer DG (1988) Singularities and groups in bifurcation theory, vol 1. Applied mathematical sciences, series vol 51. Springer, New York

    Book  Google Scholar 

  • Guckenheimer J, Holmes P (1997) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Berlin

    Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500

    Google Scholar 

  • Izhikevich E (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT press, Cambridge

    Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical physiology. Springer, Berlin

    MATH  Google Scholar 

  • Krupa M, Popovic N, Kopell N, Rotstein H (2008) Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos 18(1):5106

    Article  MathSciNet  Google Scholar 

  • Krupa M, Szmolyan P (2001) Relaxation oscillation and canard explosion. J Differ Equ 174(2):312–368

    Article  MathSciNet  MATH  Google Scholar 

  • Krupa M, Szmolyan P (2001) Extending geometric singular perturbation theory to non hyperbolic points—fold and canard points in two dimensions. SIAM J Math Anal 33(2):286–314

    Article  MathSciNet  MATH  Google Scholar 

  • Moehlis J (2006) Canards for a reduction of the Hodgkin–Huxley equations. J Math Biology 52(2):141–153

    Article  MathSciNet  MATH  Google Scholar 

  • Munoz L, Stockton JF, Otani N (2010) Applications of control theory to the dynamics and propagation of cardiac action pontentials. Ann Biomed Eng 38(9):2865–2876

    Article  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50(10):2061–2070

    Article  Google Scholar 

  • Okuda M (1976) A new method of nonlinear analysis for shaping and threshold actions. J Phys Soc Jpn 41:1815–1816

    Article  Google Scholar 

  • Peng B, Gaspar V, Showalter K (1991) False bifurcations in chemical systems: canards. Phil Trans R Soc Lond A 337(1646):275–289

    Article  MATH  Google Scholar 

  • Platkiewicz J, Brette R (2010) A threshold equation for action potential initiation. PLoS Comput Biol 6(7):e1000850

    Article  MathSciNet  Google Scholar 

  • Prescott S, De Koninck Y, Sejnowski T (2008) Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput Biol 4(10)

  • Rinzel J (1985) Excitation dynamics: insights from simplified membrane models. Fed Proc 44:2944

    Google Scholar 

  • Rossokhin A, Saakyan Y (1992) Study of the dependence of the generation threshold of the nerve impulse on the mode of formation of the input signal on the basis of the hodgkin-huxley model. Biophysics 37(6):969–973

    Google Scholar 

  • Rotstein H, Wechselberger M, Kopell N (2008) Canard induced mixed-mode oscillations in a medial entorhinal cortex layer ii stellate cell model. SIAM J Appl Dyn Syst 7(4):1582–1611

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin J, Wechselberger M (2008) The selection of mixed-mode oscillations in a hodgkin-huxley model with multiple timescales. Chaos 18(1):15105

    Article  MathSciNet  Google Scholar 

  • Sekerli M, Del Negro C, Lee R, Butera R (2004) Estimating action potential thresholds from neuronal time-series: new metrics and evaluation of methodologies. IEEE Trans Biomed Eng 51(9):1665–1672

    Article  Google Scholar 

  • Sieber J, Gonzalez-Buelga A, Neild S, Wagg D, Krauskopf B (2008) Experimental continuation of periodic orbits through a fold. Phys Rev Lett 100(24):244101

    Google Scholar 

  • Sontag E (1998) Mathematical control theory: deterministic finite dimensional systems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Tsitolovsky L, Babkina N (2002) Neurons evaluate both the amplitude and the meaning of signals. Brain Res 946(1):104–118

    Article  Google Scholar 

  • Tsitolovsky L, Shvedov A (1997) Instrumental conditioning of the activity of putative command neurons in the mollusk Helix. Brain Res 745(1–2):271–282

    Google Scholar 

Download references

Acknowledgments

The research of M.D. and S.R. was supported by EPSRC under grant EP/E032249/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Desroches.

Appendix: The full Hodgkin–Huxley equations

Appendix: The full Hodgkin–Huxley equations

We recall here the four-dimensional Hodgkin–Huxley model from Hodgkin and Huxley (1952) together with the original parameter values. The equations read

$$\begin{aligned} \dot{V}&= (I -\bar{g}_{Na}m^3h(V-V_{Na})-\bar{g}_Kn^4(V-V_K) -g_L(V-V_L))/C, \end{aligned}$$
(67)
$$\begin{aligned} \dot{n}&= \alpha _n(V)(1-n)-\beta _n(V)n, \end{aligned}$$
(68)
$$\begin{aligned} \dot{m}&= \alpha _m(V)(1-m)-\beta _m(V)m, \end{aligned}$$
(69)
$$\begin{aligned} \dot{h}&= \alpha _h(V)(1-h)-\beta _h(V)h, \end{aligned}$$
(70)

where

$$\begin{aligned} \alpha _n(V)&= \frac{0.01(V+55)}{1-\exp (-0.1(V+55))},\quad \quad \beta _n(V) = 0.125\exp (-(V+65)/80), \\ \alpha _m(V)&= \frac{0.1(V+40)}{1-\exp (-0.1(V+40))},\quad \quad \beta _m(V) = 4\exp (-(V+65)/18), \\ \alpha _h(V)&= 0.07\exp (-0.05(V+65)),\quad \quad \beta _h(V) = \frac{1}{1+\exp (-0.1(V+35))}. \end{aligned}$$

The original parameter values for the Hodgkin–Huxley equation are given in the table below

Ionic conductances (\(\text{ mmho}/\text{ cm}^2\))

Reversal potentials (\(\text{ m}V\))

Membrane capacitance (\({\mu }F/\text{ cm}^2\))

\(\bar{g}_{Na}\)

\(\bar{g}_K\)

\(g_L\)

\(V_{Na}\)

\(V_K\)

\(V_L\)

\(C\)

\(120\)

\(36\)

\(0.3\)

\(50\)

\(-77\)

\(-54.4\)

\(1\)

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desroches, M., Krupa, M. & Rodrigues, S. Inflection, canards and excitability threshold in neuronal models. J. Math. Biol. 67, 989–1017 (2013). https://doi.org/10.1007/s00285-012-0576-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0576-z

Keywords

Mathematics Subject Classification

Navigation