Skip to main content
Log in

Recent Trends in Multimodal Optical Coherence Tomography. II. The Correlation-Stability Approach in OCT Elastography and Methods for Visualization of Microcirculation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The second part of this paper continues the discussion of possibilities for combining functionally different types of biomedical characterization of tissues using optical coherence tomography (OCT). In the first part, polarization-sensitive imaging and conventional approaches to elastographic mapping in OCT were considered. Here, we consider an unconventional approach to elastographic mapping based on the analysis of variability of OCT images of the deformed tissue, omitting the stage of the displacement-field reconstruction. We also discuss methods for quantification of blood flow and visualization of microvasculature, some of which have much in common with the elastographic approach based on the analysis of temporal variability of OCT frames. This similarity looks especially promising in the context of combining multiple contrast mechanisms to enable prospective multimodal OCT scanners, as is essential for biomedical progress given the complex and heterogeneous nature of real biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yu. Zaitsev, V. M. Gelikonov, L. A. Matveev, et al., Radiophys. and Quant. Electron., 57, 52, (2014).

    Article  ADS  Google Scholar 

  2. M. A. Sutton, W. J. Wolters, W. H. Peters, et al., Image Vision Computing, 1, 133 (1983).

    Article  Google Scholar 

  3. T. C. Chu, W. F. Ranson, and M. A. Sutton, Experimental Mech., 25, No. 3, 232 (1985).

    Article  Google Scholar 

  4. F. Hild and S. Roux, Strain, 42, 69 (2006).

    Article  Google Scholar 

  5. B. Pan, K. Qian, H. Xie, et al., Measurement Sci. Technol., 20, No. 6, 062001 (2009).

    Article  ADS  Google Scholar 

  6. B. Pan, Experimental Mech., 51, No. 7, 1223 (2011).

    Article  Google Scholar 

  7. J. Ophir, S. Alam, B. Garra, et al., J. Med. Ultrasonics, 29, 155171 (2002).

    Article  Google Scholar 

  8. V. Y. Zaitsev, L. A. Matveev, G. V. Gelikonov, et al., Laser Phys. Lett. 10, No. 6, 065601 (2013).

    Article  ADS  Google Scholar 

  9. V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, et al., SPIE Proc., 8802, Optical Coherence Tomography and Coherence Techniques VI, 880208 (2013).

  10. V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, et al., J. Biomed. Opt., 19, No. 2, 021107 (2014).

    Article  Google Scholar 

  11. A. Amon, R. Bertoni, and J. Crassous, Phys. Rev. E, 87, No. 1, 012204 (2013).

    Article  ADS  Google Scholar 

  12. G. Yu, T. Durduran, C. Zhou, et al., Clinical Cancer Res., 11, 3543 (2005).

    Article  Google Scholar 

  13. H. F. Zhang, K. Maslov, M-L. Li, et al., Opt. Express, 14, 9317 (2006).

    Article  ADS  Google Scholar 

  14. M. J. Leahy, Microcirculation Imaging, Wiley—Blackwell, New York (2012).

    Book  Google Scholar 

  15. A. K. Dunn, R. Leitgeb, R. K. Wang, et al., Biomed. Opt. Express, 7, 1861 (2011).

    Article  Google Scholar 

  16. F. E. Robles, C. Wilson, G. Grant, et al., Nature Photon., 5, 744 (2011).

    Article  ADS  Google Scholar 

  17. V. X. D. Yang, M. L. Gordon, B. Qi, et al., Opt. Express, 11, 794 (2003).

    Article  ADS  Google Scholar 

  18. B. A. Standish, A. Mariampillai, M. K. K. Leung, et al., in: V. Tuchin, ed., emphHandbook of Coherent-Domain Optical Methods, Springer, New York, (2012) p. 946.

    Google Scholar 

  19. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, Opt. Lett., 25, 1448 (2000).

    Article  ADS  Google Scholar 

  20. C. Kasai, K. Namekawa, A. Koyano, et al., IEEE Trans. Sonics Ultrasonics, 32, 458 (1985).

    Article  Google Scholar 

  21. J. A. Jensen, Estimation of Blood Velocities Using Ultrasound: a Signal Processing Approach, Cambridge University Press, Cambridge (1996).

    Google Scholar 

  22. R. S. C. Cobbold, Foundations of Biomedical Ultrasound, Oxford University Press, Oxford (2007).

    Google Scholar 

  23. R. Leitgeb, L. Schmetterer, W. Drexler, et al., Opt. Express, 11, 3116 (2003).

    Article  ADS  Google Scholar 

  24. R. K. Wang and L. An, Opt. Express, 17, 8926 (2009).

    Article  ADS  Google Scholar 

  25. V. J. Srinivasan, S. Sakaszic, I. Gorczynska, et al., Opt. Express, 18, 2477 (2010).

    Article  Google Scholar 

  26. H. Ren, Y. Wang, J. S. Nelson, et al., SPIE Proc., 4956, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, 225 (2003).

  27. K. Kurokawa, K. Sasaki, S. Makita, et al., Opt. Express, 20, 22796 (2012).

    Article  ADS  Google Scholar 

  28. R. K. Wang, S. L. Jacques, Z. Ma, et al., Opt. Express, 15, 4083 (2007).

    Article  ADS  Google Scholar 

  29. L. An and R. K. Wang, Opt. Express, 16, 11438 (2008).

    Article  ADS  Google Scholar 

  30. G. van Soest, T. Goderie, E. Regar, et al., J. Biomed. Opt., 15, 011105 (2010).

    Article  Google Scholar 

  31. S. Yousefi, J. Qin, and R. K. Wang, Biomed. Opt. Express, 4, 1214 (2013).

    Article  Google Scholar 

  32. R. K. Wang, Opt. Lett., 33, 1878 (2008).

    Article  ADS  Google Scholar 

  33. J. Fingler, D. Schwartz, C. Yang, et al., Opt. Express, 15, 12636 (2007).

    Article  ADS  Google Scholar 

  34. A. Mariampillai, B. A Standish, E. H. Moriyama, et al., Opt. Lett., 33, 1530 (2008).

    Article  ADS  Google Scholar 

  35. A. Mariampillai, M. K. K. Leung, M. Jarvi, et al., Opt. Lett., 35, 1257 (2010).

    Article  ADS  Google Scholar 

  36. B. J. Vakoc, R. M. Lanning, J. A. Tyrell, et al., Nature Medicine 15, 1219 (2009).

    Article  Google Scholar 

  37. J. K. Barton and S. Stromski, Opt. Express, 13, 5234 (2005).

    Article  ADS  Google Scholar 

  38. J. W. Goodman, Statistical Optics, Wiley, New York (2000).

    Google Scholar 

  39. L. Conroy, R. DaCosta, and I. A. Vitkin, Opt. Lett., 37, 3180 (2012).

    Article  ADS  Google Scholar 

  40. B. Davoudi, M. Morrison, K. Bizheva, et al., J. Biomed. Opt., 18, 076008 (2013).

    Article  Google Scholar 

  41. J. Fingler, R. J. Zawadzki, J. S. Werner, et al., Opt. Express, 17, 22190 (2009).

    Article  ADS  Google Scholar 

  42. A. Mariampillai, Development of a High Resolution Microvascular Imaging Toolkit for Optical Coherence Tomography, PhD thesis in med. biophys, University of Toronto, Toronto (2010).

  43. S. M. Mahmut, D. W. Cadotte, B. Vuong, et al., J. Biomed. Opt., 18, 050901 (2013).

    Article  ADS  Google Scholar 

  44. E. Jonathan, J. Enfield, M. J. Leahy, J. Biophoton., 4, 583 (2010).

    Google Scholar 

  45. N. Mohan and B. J. Vakoc, Opt. Lett., 36, 2068 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Zaitsev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 57, No. 3, pp. 231–250, March 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, V.Y., Vitkin, I.A., Matveev, L.A. et al. Recent Trends in Multimodal Optical Coherence Tomography. II. The Correlation-Stability Approach in OCT Elastography and Methods for Visualization of Microcirculation. Radiophys Quantum El 57, 210–225 (2014). https://doi.org/10.1007/s11141-014-9505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9505-x

Keywords

Navigation