1 Introduction and results

In the following \(\Vert x\Vert \) denotes the distance of a real number x to the nearest integer. Let \(\xi \) be an irrational real number. Then the irrationality exponent \(\mu (\xi )\) of \(\xi \) is defined by setting \(\mu ( \xi ) =v(\xi )+1\), where \(v(\xi )\) is the infimum of the real numbers u for which the inequality

$$\begin{aligned} \left\| N\xi \right\| >N^{-u} \end{aligned}$$

holds for every sufficiently large positive integer N. By restricting the set of positive integers N in the above definition to a certain infinite subset of positive integers, we get the definition of so-called restricted irrationality exponents. Let now d be an integer, \(|d|\ge 2\). We will follow Bennett and Bugeaud [3] by defining \(v_d(\xi )\) to be the infimum of the real numbers u for which the inequality

$$\begin{aligned} \left\| d^s\xi \right\| >|d|^{-su} \end{aligned}$$

holds for every sufficiently large positive integer s. Likewise, \(v_d^{\text {eff}}(\xi )\) denotes the infimum of the real numbers u for which there exists a computable constant \(c(\xi ,d)\) such that the condition

$$\begin{aligned} \left\| d^s\xi \right\| >c(\xi ,d)|d|^{-su} \end{aligned}$$

holds for every sufficiently large positive integer s. Further, we call \(v_d(\xi )+1\) and \(v_d^{\text {eff}}(\xi )+1\) restricted irrationality exponents of \(\xi \).

Amou and Bugeaud [1] noted that \(v_d(\xi ) \ge 0\) for all irrational real numbers \(\xi \), and furthermore \(v_d(\xi )=0\) for almost all irrational real numbers \(\xi \), provided that \(d\ge 2\). However, if \(\xi \) is a classical mathematical constant like \(\sqrt{2}\), e or \(\pi \), we do not even know whether \(v_d(\xi )=0\) for any d. On the other hand, for certain explicit numbers there are already results which give upper bounds for restricted irrationality exponents. Namely, Rivoal [10] proved that \(v_d(\log r)\) is arbitrarily close to 0 for certain integers d, when \(r\in {\mathbb {Q}}\) is sufficiently close to 1. See also Dubickas [6]. Recently, Bennett and Bugeaud [3] proved that there exists an effectively computable positive constant \(\tau _1=\tau _1(p)\) such that

$$\begin{aligned} v_p^{\text {eff}}\left( \sqrt{p^2+1} \right) \le 1-\tau _1 \end{aligned}$$

for every prime number p. They also noted that one can deduce the existence of an effectively computable positive constant \(\tau _2=\tau _2(d,k)\) such that

$$\begin{aligned} v_d^{\text {eff}}\left( \sqrt{d^{2k}+1}\right) \le 1-\tau _2 \end{aligned}$$

for every positive integer k and \(d\ge 2\).

In the present work, we investigate restricted rational approximations for the values of Jacobi’s triple product

$$\begin{aligned} \Pi _q(t):= \prod _{m=1}^\infty (1-q^{2m})(1+q^{2m-1}t)(1+q^{2m-1}t^{-1}) \end{aligned}$$

at \(t=a/b\in {\mathbb {Q}}\setminus \{0\}\) and \(q=1/d\), where \(d\in {\mathbb {Z}}{\setminus }\{0, \pm 1 \}\). Particularly, we consider determining effective exponents \(v_d^{\text {eff}}(\Pi _{\frac{1}{d}}(a/b))\). Furthermore, we obtain that \(v_d(\Pi _{\frac{1}{d}}(a/b))=0\).

Theorem 1

Let \(t=a/b\in {\mathbb {Q}}\setminus \{0\}\), \(\gcd (a,b)= 1\), \(d\in {\mathbb {Z}}\) and   \(\max \{|a|,|b|\}<|d|\). Then for all \(s, M\in {\mathbb {Z}}\) with \(s\ge C\) we have

$$\begin{aligned} \left| \Pi _{\frac{1}{d}}(t) - \frac{M}{d^s}\right| > \frac{1}{2|d|^{s(1+\varepsilon _1(s))}},\quad \varepsilon _1(s)=\frac{6}{\sqrt{s}}+\frac{8}{s}, \end{aligned}$$

where \(C=\left( 3\max \{|a|,|b|\}-1\right) ^2/4\). Consequently, \(v_d(\Pi _{\frac{1}{d}}(t))= 0\).

It is remarkable that (as far as we know) the only irrationality measure results for Jacobi’s triple product at arbitrary rational \(t\ne 0\) are outcomes of the linear independence results for (the right-hand side of) Jacobi’s Theta function

$$\begin{aligned} \Theta (q,t):= \sum _{n=0}^\infty q^{n^2}t^n,\quad |q|<1. \end{aligned}$$

Namely, because \(\Pi _{\frac{1}{d}}(t)=-1+\Theta (1/d,t)+\Theta (1/d,t^{-1})\), the result of Bundschuh and Shiokawa in [5] implies the estimate

$$\begin{aligned} \mu \left( \Pi _{\frac{1}{d}}(t) \right) \le \frac{5+\sqrt{17}}{2}=4.5615\ldots \end{aligned}$$

for \(d\in {\mathbb {Z}}\setminus \{0, \pm 1 \}\) and \(t\in {\mathbb {Q}}\setminus \{0\}\).

We also study the restricted approximations for Euler’s infinite product

$$\begin{aligned} \pi _q(t):=\prod _{n=1}^\infty (1 - q^{n}t) \end{aligned}$$

at \(t=1\), when \(q=1/d\), \(d\in {\mathbb {Z}}\setminus \{0, \pm 1 \}\) and \(q= (1-\sqrt{5})/(1+\sqrt{5})\). Jacobi’s triple product has a q-expansion, given by the well-known Jacobi’s triple product identity

$$\begin{aligned} \prod _{m=1}^\infty (1-q^{2m})(1+q^{2m-1}t)(1+q^{2m-1}t^{-1})= \sum _{n=-\infty }^{\infty } t^n q^{n^2}, \end{aligned}$$
(1)

see e.g. [2, p. 498]. Our proof of Theorem 1 will be based on this identity. By replacing q with \(q^{3/2}\) and t with \(-q^{-1/2}\) in (1), we obtain, after simplification, that

$$\begin{aligned} \prod _{m=1}^\infty (1-q^{3m})(1-q^{3m-2})(1-q^{3m-1})= \sum _{n=-\infty }^{\infty } (-1)^n q^{(3n^2-n)/2}. \end{aligned}$$

This can be rewritten as

$$\begin{aligned} \pi _q:=\prod _{n=1}^\infty (1-q^n)= 1 + \sum _{n=1}^\infty (-1)^n \left( q^{n(3n-1)/2} +q^{n(3n+1)/2} \right) , \end{aligned}$$
(2)

which is the famous Euler’s pentagonal formula, see e.g. [2, p. 500]. On the basis of the above consideration Euler’s infinite product \(\pi _q\) seems to be a special case of Jacobi’s triple product. But because of the square root substitutions we can not obtain our results for Euler’s product \(\pi _q\) from Theorem 1. Therefore, we investigate separately the product \(\pi _q\) at \(q=1/d\), \(d\in {\mathbb {Z}}\setminus \{0, \pm 1 \}\).

Theorem 2

Let \(d\in {\mathbb {Z}}\setminus \{0, \pm 1 \}\), \(M\in {\mathbb {Z}}\) and \(s\in {\mathbb {Z}}_+\). Then

$$\begin{aligned} \left| \pi _{\frac{1}{d}}(1)- \frac{M}{d^s}\right| > \frac{1}{2 |d|^{s(1+\varepsilon _2(s))}},\quad \varepsilon _2(s) = \frac{3+\sqrt{1+24s}}{2s}. \end{aligned}$$

Consequently, \(\ v_d(\pi _{\frac{1}{d}}(1))=0.\)

Theorem 2 improves considerably the earlier results concerning this special case. Recently, Leinonen et al. [7] obtained that \(v_d(\pi _{\frac{1}{d}}(t))=1.1547\ldots \) with arbitrary \(t\in {\mathbb {Q}}\setminus \{0\}\). It should be noted that there are more general results available which consider the irrationality exponent of Euler’s product. Already in 1969 Bundschuh [4] proved that the irrationality exponent of the product \(\pi _{\frac{1}{d}}(t)\) satisfies the inequality \(\mu (\pi _{\frac{1}{d}}(t))\le 7/3\), for \(|d|\in {\mathbb {Z}}_{\ge 2}\) and \(t\in {\mathbb {Q}}\setminus \{0\}\). This is still the best known upper bound for \(\mu (\pi _{\frac{1}{d}}(t))\). For a more extensive overview on the arithmetical properties of Euler’s infinite product \(\pi _q(t)\), see e.g. [7].

The next theorem is inspired by the work [8], where the authors investigated the distances between Fibonomials. Therefore we consider restricted approximations over the number field \({\mathbb {K}}={\mathbb {Q}}(\sqrt{5})\), only. In the following, the notation \({\mathbb {Z}}_{{\mathbb {K}}}\) denotes the ring of integers of \({\mathbb {K}}\) and \({\overline{A}}:=a-b\sqrt{5}\) denotes the field conjugate of \(A=a+b\sqrt{5}\in {\mathbb {K}}\).

Theorem 3

Let \({\mathbb {K}}={\mathbb {Q}}(\sqrt{5})\), \(q=(1-\sqrt{5})/(1+\sqrt{5})\), \(\alpha = (1+\sqrt{5})/2\) and \(s\in {\mathbb {Z}}_+\). Let \(M\in {\mathbb {Z}}_{\mathbb {K}}{\setminus }\{0\}\) be such that \(\left| {\overline{M}}\right| \le |M|\). Then

$$\begin{aligned} \left| \pi _q(1)- \frac{M}{\alpha ^s}\right| > \frac{1}{2\alpha ^{s(2 +\varepsilon _3(s))}},\quad \varepsilon _3(s)= \frac{17+2\sqrt{1+24s}}{s}. \end{aligned}$$
(3)

The lower bound in (3) is an improvement to the result proved in [8], where the corresponding approximation exponent is \(s(3 +\varepsilon (s))\) and \(M=(\sqrt{5})^l\), \(l\in {\mathbb {Z}}_+\). There are more general approximation results for Euler’s infinite product and related q-series over number fields, see e.g. [9]. The results in [9] imply that there exist positive constants \(\Gamma \) and \(H_0\) such that

$$\begin{aligned} \left| \pi _q(1)- \frac{M}{N}\right| > \frac{1}{H^{14/3 +\varepsilon (H)}},\quad \varepsilon (H)=\frac{\Gamma }{\sqrt{\log H}}, \end{aligned}$$

for all \(M/N\in {\mathbb {Q}}(\sqrt{5})\), where \(q=(1-\sqrt{5})/(1+\sqrt{5})\), \(M,N\in {\mathbb {Z}}_{{\mathbb {Q}}(\sqrt{5})}\), \(N\ne 0\) and \(H=\max \{|M|,|N|,|{\overline{M}}|,|{\overline{N}}|\}\ge H_0\). On the other hand, in the Remark section of this paper we prove that for all \(\tau \in {\mathbb {R}}\setminus {\mathbb {Q}}(\sqrt{5})\) there exists an infinite sequence of fractions \(M/N\in {\mathbb {Q}}(\sqrt{5})\), where \(M,N\in {\mathbb {Z}}_{{\mathbb {Q}}(\sqrt{5})}\) and \(N\ne 0\), such that

$$\begin{aligned} \left| \tau - \frac{M}{N}\right| < \frac{9+4\sqrt{5}}{|N|^4}. \end{aligned}$$

2 Proof of Theorem 1

We suppose that \(N\in {\mathbb {Z}}_+\). By Jacobi’s triple product identity (1) we have

$$\begin{aligned} \Pi _{\frac{1}{d}}(t)=\sum _{n=-\infty }^{\infty } d^{-n^2}t^n. \end{aligned}$$

Because \(t=a/b\), we obtain that

$$\begin{aligned} (ab)^Nd^{N^2}\Pi _{\frac{1}{d}}(t)= A_N(d,t) + R_N(d,t), \end{aligned}$$
(4)

where

$$\begin{aligned} A_N(d,t) = (ab)^Nd^{N^2} + (ab)^N\sum _{n=1}^N d^{N^2-n^2}\left( t^n+\frac{1}{t^n}\right) \in {\mathbb {Z}}\end{aligned}$$

and

$$\begin{aligned} R_N(d,t)= (ab)^N\sum _{n=N+1}^\infty \frac{t^n+\frac{1}{t^n}}{d^{n^2-N^2}} \in {\mathbb {Q}}\left[ \left[ t, \frac{1}{t}, \frac{1}{d}\right] \right] . \end{aligned}$$

We write \(n=N+1+k\). Since \(n^2-N^2\ge 2N+1+(2N+3)k\ \) for all \(k\in {\mathbb {Z}}_{\ge 0}\), we get that

$$\begin{aligned} |R_N(d,t)|&\le \frac{|a|^{2N+1}}{|b||d|^{2N+1}}\sum _{k=0}^\infty \left( \frac{|a|}{|b||d|^{2N+3}}\right) ^k+ \frac{|b|^{2N+1}}{|a||d|^{2N+1}}\sum _{k=0}^\infty \left( \frac{|b|}{|a||d|^{2N+3}}\right) ^k\\&= \frac{|a|^{2N+1}}{|b||d|^{2N+1}-|a|/|d|^2}+\frac{|b|^{2N+1}}{|a||d|^{2N+1}-|b|/|d|^2}. \end{aligned}$$

Further, our assumption \(\max \{|a|,|b|\}+1\le |d|\) implies that

$$\begin{aligned} |R_N(d,t)|&\le \frac{|a|^{2N+1}}{(|a|+1)^{2N+1}-1}+\frac{|b|^{2N+1}}{(|b|+1)^{2N+1}-1}\\&\le \frac{|a|^{2N+1}}{|a|^{2N+1}+(2N+1)|a|^{2N}}+\frac{|b|^{2N+1}}{|b|^{2N+1}+(2N+1)|b|^{2N}}. \end{aligned}$$

We choose \({\hat{N}}:=(3\max \{|a|,|b|\}-1)/2\). Then

$$\begin{aligned} |R_N(d,t)| \le \frac{1}{2} \end{aligned}$$
(5)

for all \( N\ge {\hat{N}}\).

Let us denote

$$\begin{aligned} \Lambda := \Pi _{\frac{1}{d}}(t)- \frac{M}{d^s}. \end{aligned}$$

By using (4) we obtain that

$$\begin{aligned} (ab)^N d^{N^2}\Lambda = A_N(d,t) - (ab)^N M d^{N^2-s} + R_N(d,t), \end{aligned}$$

where the main term

$$\begin{aligned} \Delta _N(t):= A_N(d,t)- (ab)^N Md^{N^2-s} \end{aligned}$$

is a rational integer, assuming that \(N \ge \sqrt{s}\). Because the determinant

$$\begin{aligned}&\left| \begin{matrix} A_N(d,t) &{} (ab)^N d^{N^2}\\ A_{N+1}(d,t) &{} (ab)^{N+1}d^{(N+1)^2} \end{matrix}\right| \\&= (ab)^{N+1}d^{(N+1)^2}A_N(d,t) - (ab)^Nd^{N^2}A_{N+1}(d,t)\\&= (ab)^{2N+1}d^{N^2}d^{(N+1)^2} \left( \sum _{n=1}^N d^{-n^2}\left( t^n+\frac{1}{t^n}\right) - \sum _{n=1}^{N+1}d^{ - n^2}\left( t^n+\frac{1}{t^n}\right) \right) \\&=-(ab)^{2N+1}d^{N^2} \left( t^{N+1}+\frac{1}{t^{N+1}}\right) \ne 0, \end{aligned}$$

we get that \(\Delta _N(t)\ne 0\) or \(\Delta _{N+1}(t) \ne 0\). We let now N be such that \(\hat{N}\le \sqrt{s}\le N< \sqrt{s}+2\) and \(\Delta _{N}(t)\in {\mathbb {Z}}\setminus \{0\}\). Hence,

$$\begin{aligned} 1\le |\Delta _N(t)|=|(ab)^Nd^{N^2}\Lambda -R_N(d,t)|\le |ab|^N|d|^{N^2}|\Lambda |+|R_N(d,t)|. \end{aligned}$$

By (5) we get the approximation

$$\begin{aligned} 1 \le 2|ab|^{N}|d|^{N^2}|\Lambda |< 2|d|^{s\left( 1+6/\sqrt{s}+8/s\right) }|\Lambda |, \end{aligned}$$

which completes the proof of Theorem 1.

3 Proof of Theorem 2

We suppose that \(N\in {\mathbb {Z}}_+\). By Euler’s pentagonal formula (2) we have

$$\begin{aligned} \pi _{1/d}(1)= 1 + \sum _{n=1}^\infty (-1)^n \left( d^{-n(3n-1)/2} +d^{-n(3n+1)/2} \right) . \end{aligned}$$

Hence, we can write

$$\begin{aligned} d^{N(3N+1)/2}\pi _{1/d}(1)= A_N(d)+ R_N(d), \end{aligned}$$
(6)

where

$$\begin{aligned} A_N(d)= & {} d^{N(3N+1)/2}\\{} & {} + \sum _{n=1}^N (-1)^n\left( d^{N(3N+1)/2 - n(3n-1)/2} + d^{N(3N+1)/2 - n(3n+1)/2}\right) \in {\mathbb {Z}}[d], \end{aligned}$$

and

$$\begin{aligned} R_N(d)&=\sum _{n=N+1}^\infty (-1)^n\left( \frac{1}{d^{ n(3n-1)/2 -N(3N+1)/2}} + \frac{1}{d^{n(3n+1)/2 -N(3N+1)/2}}\right) \\&\in {\mathbb {Z}}[[1/d]]. \end{aligned}$$

By noting that \( (N+1)(3(N+1)-1)/2 -N(3N+1)/2= 2N+1\) we deduce that

$$\begin{aligned} |R_N(d)| \le \frac{1}{|d|^{2N+1}}\sum _{n=0}^\infty \frac{1}{|d|^n} \le \frac{2}{|d|^{2N+1}}\le \frac{1}{4}. \end{aligned}$$
(7)

Let us denote

$$\begin{aligned} \Lambda := \pi _{1/d}(1)-\frac{M}{d^s}, \end{aligned}$$
(8)

where \(M \in {\mathbb {Z}}\), \(s\in {\mathbb {Z}}_+\). By using (6) and (8), we get that

$$\begin{aligned} d^{N(3N+1)/2} \Lambda = A_N(d) - Md^{N(3N+1)/2-s} + R_N(d), \end{aligned}$$

where the term

$$\begin{aligned} \Delta _N:= A_N(d) - Md^{N(3N+1)/2-s} \end{aligned}$$

is an integer if \(N(3N+1)/2-s >0\). Additionally,

$$\begin{aligned} d \not \mid \Delta _N = (-1)^N + (-1)^N d^{N} + \cdots + d^{N(3N+1)/2}- Md^{N(3N+1)/2 -s}. \end{aligned}$$

Hence, \(\Delta _N \ne 0\) and further

$$\begin{aligned} 1 \le |\Delta _N| = |d^{N(3N+1)/2}\Lambda - R_N(d)|\le |d|^{N(3N+1)/2}|\Lambda | + |R_N(d)|. \end{aligned}$$

By (7), we obtain that

$$\begin{aligned} 1< 2|\Lambda | |d|^{N(3N+1)/2}. \end{aligned}$$

In particular, this lower bound holds when N is such that

$$\begin{aligned} (N-1)(3N-2)/2\le s<N(3N+1)/2. \end{aligned}$$

In this case,

$$\begin{aligned} N(3N+1)/2&=(N-1)(3N-2)/2+3N-1\\&\le s\left( 1+\frac{3+\sqrt{1+24s}}{2s}\right) , \end{aligned}$$

and we obtain Theorem 2.

4 Proof of Theorem 3

We suppose that \(N\in {\mathbb {Z}}_+\). By (2), we have

$$\begin{aligned} \begin{aligned} \pi _q(1)&= 1+ \sum _{n=1}^\infty (-1)^n \left( \left( \frac{1-\sqrt{5}}{1+\sqrt{5}}\right) ^{n(3n-1)/2} + \left( \frac{1-\sqrt{5}}{1+\sqrt{5}}\right) ^{n(3n+1)/2}\right) \\&=1 + \sum _{n=1}^\infty \left( \frac{(-1)^{n + n(3n-1)/2}}{\alpha ^{n(3n-1)}} + \frac{(-1)^{n+ n(3n+1)/2}}{\alpha ^{n(3n+1)}} \right) .\\ \end{aligned} \end{aligned}$$

Hence, we can write

$$\begin{aligned} \alpha ^{N(3N+1)}\pi _q = A_N(\alpha )+ R_N(\alpha ), \end{aligned}$$
(9)

where

$$\begin{aligned} \begin{aligned} A_N(\alpha ) = \alpha ^{N(3N+1)} + \sum _{n=1}^N (&(-1)^{n+ n(3n-1)/2}\alpha ^{N(3N+1) - n(3n-1)} \\ +&(-1)^{n+n(3n+1)/2}\alpha ^{N(3N+1) - n(3n+1)} ) \in {\mathbb {Z}}[\alpha ], \end{aligned} \end{aligned}$$
(10)

and

$$\begin{aligned} R_N(\alpha ) = \sum _{n=N+1}^\infty \left( \frac{(-1)^{n+ n(3n-1)/2}}{\alpha ^{ n(3n-1) -N(3N+1)}} + \frac{(-1)^{n + n(3n+1)/2}}{\alpha ^{n(3n+1)-N(3N+1)}}\right) \in {\mathbb {Z}}[[1/\alpha ]]. \end{aligned}$$

By noting that \((N+1)(3(N+1)-1) - N(3N+1) =4N+2\), we deduce that

$$\begin{aligned} |R_N(\alpha )| \le \frac{1}{\alpha ^{4N+2}} \sum _{n=0}^\infty \frac{1}{\alpha ^n} = \frac{1}{\alpha ^{4N+1}(\alpha -1)}=\frac{1}{\alpha ^{4N}}. \end{aligned}$$
(11)

We denote

$$\begin{aligned} \Lambda :=\pi _q(1) -\frac{M}{\alpha ^s}. \end{aligned}$$
(12)

From Eqs. (9) and (12) we get that

$$\begin{aligned} \alpha ^{N(3N+1)} \Lambda = A_N(\alpha ) - M\alpha ^{N(3N+1)-s} + R_N(\alpha ). \end{aligned}$$

Because \(A_N(\alpha )\in {\mathbb {Z}}[\alpha ]\) and \(M, \alpha , 1/\alpha \in {\mathbb {Z}}_{\mathbb {K}}\), we have

$$\begin{aligned} \Delta _N:= A_N(\alpha ) - M\alpha ^{N(3N+1)-s}\in {\mathbb {Z}}_{\mathbb {K}}. \end{aligned}$$

Since the determinant

$$\begin{aligned} \begin{aligned} \left| \begin{matrix} A_N(\alpha ) &{} \alpha ^{N(3N+1)} \\ A_{N+1}(\alpha ) &{} \alpha ^{(N+1)(3(N+1)+1)}\end{matrix}\right| = \alpha ^{(N+1)(3(N+1)+1)}A_N(\alpha ) - \alpha ^{N(3N+1)}A_{N+1}(\alpha )\\ =\alpha ^{N(3N+1)}(-1)^{N+ (N+1)(3N+2)/2}\left( \alpha ^{2(N+1)} +(-1)^{N+1} \right) \end{aligned} \end{aligned}$$

is non-zero. We have that \(\Delta _N\ne 0\) or \(\Delta _{N+1}\ne 0\). So, we can choose N such that \(\Delta _{N} \in {\mathbb {Z}}_{\mathbb {K}}\setminus \{0\}\). Hence, we have

$$\begin{aligned} 1 \le |N_{{\mathbb {K}}/{\mathbb {Q}}}(\Delta _{N})| = |\Delta _{N}||\overline{\Delta _{N}}| = |\alpha ^{N(3N+1)}\Lambda - R_{N}(\alpha )||\overline{\Delta _{N}}|. \end{aligned}$$
(13)

Let us bound from above the absolute value of the conjugate \(\overline{\Delta _{N}}\). First, we note that

$$\begin{aligned} \begin{aligned} |\overline{\Delta _{N}}|&= |\overline{A_{N}(\alpha )- M\alpha ^{N(3N+1) -s}} |= |A_{N}({\overline{\alpha }}) - {\overline{M}}{\overline{\alpha }}^{N(3N+1)-s}|\\&\le |A_{N}({\overline{\alpha }})| + |{\overline{M}}||{\overline{\alpha }}|^{N(3N+1)-s}.\end{aligned} \end{aligned}$$

By using (10), we get that

$$\begin{aligned} \begin{aligned} |A_{N}({\overline{\alpha }} )|&< \sum _{n=0}^{N(3N+1)} |{\overline{\alpha }}|^{n} < \sum _{n=0}^\infty |{\overline{\alpha }}|^n = \frac{1}{1+{\overline{\alpha }}}=\alpha ^2. \end{aligned} \end{aligned}$$

We can restrict the approximation to such numbers \(M/\alpha ^s\) that

$$\begin{aligned} \left| \pi _q(1)-\frac{M}{\alpha ^s}\right| \le 1. \end{aligned}$$

Because

$$\begin{aligned} \pi _q(1)\sim 1.226742\ldots , \end{aligned}$$

it is enough to consider numbers \(M/\alpha ^s\) satisfying

$$\begin{aligned} 0<M/\alpha ^s\le 2.226742\ldots <\alpha ^2. \end{aligned}$$

Now we suppose that \(N(3N+1)\ge 2s\). Since \(|{\overline{M}}| \le |M|\), by our assumption, we obtain that

$$\begin{aligned} |{\overline{M}}||{\overline{\alpha }}|^{N(3N+1)-s} \le |M|\left| \frac{-1}{\alpha }\right| ^{N(3N+1)-s} = |M|\alpha ^{s-N(3N +1)}\le \frac{M}{\alpha ^s} < \alpha ^2. \end{aligned}$$

Hence,

$$\begin{aligned} |\overline{\Delta _N}|< 2\alpha ^2. \end{aligned}$$
(14)

Inequalities (13) and (14) imply now that

$$\begin{aligned} \frac{1}{2\alpha ^2} < \alpha ^{N(3N+1)}|\Lambda | + |R_{N}(\alpha )|. \end{aligned}$$

By (11), we have

$$\begin{aligned} |R_{N}(\alpha )| \le \frac{1}{\alpha ^4}, \end{aligned}$$

which implies

$$\begin{aligned} 1< 2|\Lambda |\alpha ^5 \alpha ^{N(3N +1)}. \end{aligned}$$

We fix an integer \({\hat{N}}\) such that \({\hat{N}}(3{\hat{N}}+1)<2s\le ({\hat{N}}+1)(3({\hat{N}}+1)+1)\). We can now suppose that N is \({\hat{N}}+1\) or \({\hat{N}}+2\). Hence,

$$\begin{aligned} N(3N+1)&\le ({\hat{N}}+2)(3({\hat{N}}+2)+1) ={\hat{N}}(3{\hat{N}}+1)+12{\hat{N}}+14\\&<s\left( 2+\frac{12+2\sqrt{1+24s}}{s}\right) , \end{aligned}$$

and we obtain Theorem 3.

5 Remark

When the approximations \(M/N\in {\mathbb {Q}}(\sqrt{5})\) are not restricted, then there are better approximations for general \(\tau \in {\mathbb {R}}{\setminus } {\mathbb {Q}}(\sqrt{5})\). The ring of integers \({\mathbb {Z}}_{{\mathbb {Q}}(\sqrt{5})}= {\mathbb {Z}}[\omega ]\), where \(\omega =\frac{1+\sqrt{5}}{2}\). We call the fraction

$$\begin{aligned} \frac{a+b\omega }{c+d\omega },\quad a,b,c,d\in {\mathbb {Z}} \end{aligned}$$

primitive whenever the vector (abcd) is primitive, meaning \(\gcd (a,b,c,d)=1\).

Lemma 1

Let \(\tau \in {\mathbb {R}}\setminus {\mathbb {Q}}(\sqrt{5})\). Then there exists an infinite sequence of primitive fractions \(M/N\in {\mathbb {Q}}(\sqrt{5})\), where \(M,N\in {\mathbb {Z}}_{{\mathbb {Q}}(\sqrt{5})}\), \(N\ne 0\), such that

$$\begin{aligned} \left| \tau - \frac{M}{N}\right| < \frac{9+4\sqrt{5}}{|N|^4}. \end{aligned}$$
(15)

Proof

Let \(\tau \in {\mathbb {R}}\setminus {\mathbb {Q}}(\sqrt{5})\). Because \(1,\omega ,\tau \) and \(\tau \omega \) are linearly independent over \({\mathbb {Q}}\), there exists an infinite sequence of primitive integer 4–tuples \((a,b,c,d)\in {\mathbb {Z}}^4\setminus \{(0,0,0,0)\}\) such that

$$\begin{aligned} \left| a+b\omega +c\tau +d\tau \omega \right| < \frac{1}{H^3}, \end{aligned}$$
(16)

where \(H=\max \{|b|,|c|,|d|\}\ge 1\) (see Corollary 1D in [11, p. 27]). If \(c=d=0\), then \(H=|b|\ge 1\) and

$$\begin{aligned} 0\ne \left| a+b\omega \right| < \frac{1}{|b|^3}. \end{aligned}$$

Thus,

$$\begin{aligned} 1\le \left| (a+b\omega )(a+b{\overline{\omega }})\right| < \frac{\left| a+b{\overline{\omega }}\right| }{|b|^3}\le \frac{\left| \sqrt{5}\right| }{|b|^2}+\frac{1}{|b|^6} \end{aligned}$$

implying \(|b|= 1\) and so \(|a|\le 2\), contradicting the fact that there are infinitely many (abcd). Hence there exists an infinite sequence of integer 4–tuples \((a,b,c,d)\in {\mathbb {Z}}^4\setminus \{(0,0,0,0)\}\) satisfying (16) with \((c,d)\ne (0,0)\). We also note that \(|c+d\omega |\le (1+\omega )H\). Consequently,

$$\begin{aligned} \left| \tau - \frac{a+b\omega }{c+d\omega }\right| < \frac{1}{H^3|c+d\omega |} \le \frac{(1+\omega )^3}{|c+d\omega |^4}= \frac{9+4\sqrt{5}}{|c+d\omega |^4}, \end{aligned}$$

which completes the proof . \(\square \)

The above bound (15) is a variation of the fundamental result presented in e.g. [11, p. 253].