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Abstract
We obtain rational approximations for Jacobi’s triple product

�q(t) :=
∞∏

m=1

(1 − q2m)(1 + q2m−1t)(1 + q2m−1t−1),

when t = a/b ∈ Q is non-zero and q = 1/d with d ∈ Z\{0,±1}. Especially we give
effective and restricted approximation for the values of Jacobi’s triple product and for
the values of Euler’s infinite product.

Keywords Diophantine approximation · Restricted approximation exponent ·
Irrationality exponent · q-Exponential series

Mathematics Subject Classification 11J82

1 Introduction and results

In the following ‖x‖ denotes the distance of a real number x to the nearest integer. Let
ξ be an irrational real number. Then the irrationality exponent μ(ξ) of ξ is defined by
setting μ(ξ) = v(ξ) + 1, where v(ξ) is the infimum of the real numbers u for which
the inequality

‖Nξ‖ > N−u
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holds for every sufficiently large positive integer N . By restricting the set of positive
integers N in the above definition to a certain infinite subset of positive integers, we get
the definition of so-called restricted irrationality exponents. Let now d be an integer,
|d| ≥ 2. We will follow Bennett and Bugeaud [3] by defining vd(ξ) to be the infimum
of the real numbers u for which the inequality

∥∥dsξ
∥∥ > |d|−su

holds for every sufficiently large positive integer s. Likewise, veffd (ξ) denotes the
infimum of the real numbers u for which there exists a computable constant c(ξ, d)

such that the condition

∥∥dsξ
∥∥ > c(ξ, d)|d|−su

holds for every sufficiently large positive integer s. Further, we call vd(ξ) + 1 and
veffd (ξ) + 1 restricted irrationality exponents of ξ .

Amou and Bugeaud [1] noted that vd(ξ) ≥ 0 for all irrational real numbers ξ , and
furthermore vd(ξ) = 0 for almost all irrational real numbers ξ , provided that d ≥ 2.
However, if ξ is a classical mathematical constant like

√
2, e or π , we do not even

know whether vd(ξ) = 0 for any d. On the other hand, for certain explicit numbers
there are already results which give upper bounds for restricted irrationality exponents.
Namely, Rivoal [10] proved that vd(log r) is arbitrarily close to 0 for certain integers
d, when r ∈ Q is sufficiently close to 1. See also Dubickas [6]. Recently, Bennett
and Bugeaud [3] proved that there exists an effectively computable positive constant
τ1 = τ1(p) such that

veffp

(√
p2 + 1

)
≤ 1 − τ1

for every prime number p. They also noted that one can deduce the existence of an
effectively computable positive constant τ2 = τ2(d, k) such that

veffd

(√
d2k + 1

)
≤ 1 − τ2

for every positive integer k and d ≥ 2.
In the present work, we investigate restricted rational approximations for the values

of Jacobi’s triple product

�q(t) :=
∞∏

m=1

(1 − q2m)(1 + q2m−1t)(1 + q2m−1t−1)

at t = a/b ∈ Q \ {0} and q = 1/d, where d ∈ Z\{0,±1}. Particularly, we con-
sider determining effective exponents veffd (� 1

d
(a/b)). Furthermore, we obtain that

vd(� 1
d
(a/b)) = 0.
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Theorem 1 Let t = a/b ∈ Q \ {0}, gcd(a, b) = 1, d ∈ Z and max{|a|, |b|} < |d|.
Then for all s, M ∈ Z with s ≥ C we have

∣∣∣∣� 1
d
(t) − M

ds

∣∣∣∣ >
1

2|d|s(1+ε1(s))
, ε1(s) = 6√

s
+ 8

s
,

where C = (3max{|a|, |b|} − 1)2 /4. Consequently, vd(� 1
d
(t)) = 0.

It is remarkable that (as far as we know) the only irrationality measure results
for Jacobi’s triple product at arbitrary rational t �= 0 are outcomes of the linear
independence results for (the right-hand side of) Jacobi’s Theta function

�(q, t) :=
∞∑

n=0

qn
2
tn, |q| < 1.

Namely, because � 1
d
(t) = −1 + �(1/d, t) + �(1/d, t−1), the result of Bundschuh

and Shiokawa in [5] implies the estimate

μ
(
� 1

d
(t)

)
≤ 5 + √

17

2
= 4.5615 . . .

for d ∈ Z \ {0,±1} and t ∈ Q \ {0}.
We also study the restricted approximations for Euler’s infinite product

πq(t) :=
∞∏

n=1

(1 − qnt)

at t = 1, when q = 1/d, d ∈ Z \ {0,±1} and q = (1−√
5)/(1+√

5). Jacobi’s triple
product has a q-expansion, given by the well-known Jacobi’s triple product identity

∞∏

m=1

(1 − q2m)(1 + q2m−1t)(1 + q2m−1t−1) =
∞∑

n=−∞
tnqn

2
, (1)

see e.g. [2, p. 498]. Our proof of Theorem 1will be based on this identity. By replacing
q with q3/2 and t with −q−1/2 in (1), we obtain, after simplification, that

∞∏

m=1

(1 − q3m)(1 − q3m−2)(1 − q3m−1) =
∞∑

n=−∞
(−1)nq(3n2−n)/2.

This can be rewritten as

πq :=
∞∏

n=1

(1 − qn) = 1 +
∞∑

n=1

(−1)n
(
qn(3n−1)/2 + qn(3n+1)/2

)
, (2)
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which is the famous Euler’s pentagonal formula, see e.g. [2, p. 500]. On the basis of the
above consideration Euler’s infinite product πq seems to be a special case of Jacobi’s
triple product. But because of the square root substitutions we can not obtain our
results for Euler’s product πq from Theorem 1. Therefore, we investigate separately
the product πq at q = 1/d, d ∈ Z \ {0,±1}.
Theorem 2 Let d ∈ Z \ {0,±1}, M ∈ Z and s ∈ Z+. Then

∣∣∣∣π 1
d
(1) − M

ds

∣∣∣∣ >
1

2|d|s(1+ε2(s))
, ε2(s) = 3 + √

1 + 24s

2s
.

Consequently, vd(π 1
d
(1)) = 0.

Theorem 2 improves considerably the earlier results concerning this special case.
Recently, Leinonen et al. [7] obtained that vd(π 1

d
(t)) = 1.1547 . . . with arbitrary

t ∈ Q \ {0}. It should be noted that there are more general results available which
consider the irrationality exponent of Euler’s product. Already in 1969 Bundschuh
[4] proved that the irrationality exponent of the product π 1

d
(t) satisfies the inequality

μ(π 1
d
(t)) ≤ 7/3, for |d| ∈ Z≥2 and t ∈ Q \ {0}. This is still the best known upper

bound for μ(π 1
d
(t)). For a more extensive overview on the arithmetical properties of

Euler’s infinite product πq(t), see e.g. [7].
The next theorem is inspired by the work [8], where the authors investigated the

distances between Fibonomials. Therefore we consider restricted approximations over
the number field K = Q(

√
5), only. In the following, the notation ZK denotes the ring

of integers of K and A := a− b
√
5 denotes the field conjugate of A = a+ b

√
5 ∈ K.

Theorem 3 Let K = Q(
√
5), q = (1− √

5)/(1+ √
5), α = (1+ √

5)/2 and s ∈ Z+.
Let M ∈ ZK\{0} be such that

∣∣M
∣∣ ≤ |M |. Then

∣∣∣∣πq(1) − M

αs

∣∣∣∣ >
1

2αs(2+ε3(s))
, ε3(s) = 17 + 2

√
1 + 24s

s
. (3)

The lower bound in (3) is an improvement to the result proved in [8], where the
corresponding approximation exponent is s(3+ ε(s)) and M = (

√
5)l , l ∈ Z+. There

are more general approximation results for Euler’s infinite product and related q-
series over number fields, see e.g. [9]. The results in [9] imply that there exist positive
constants 	 and H0 such that

∣∣∣∣πq(1) − M

N

∣∣∣∣ >
1

H14/3+ε(H)
, ε(H) = 	√

log H
,

for all M/N ∈ Q(
√
5), where q = (1 − √

5)/(1 + √
5), M, N ∈ Z

Q(
√
5), N �= 0

and H = max{|M |, |N |, |M|, |N |} ≥ H0. On the other hand, in the Remark section
of this paper we prove that for all τ ∈ R \ Q(

√
5) there exists an infinite sequence of
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fractions M/N ∈ Q(
√
5), where M, N ∈ Z

Q(
√
5) and N �= 0, such that

∣∣∣∣τ − M

N

∣∣∣∣ <
9 + 4

√
5

|N |4 .

2 Proof of Theorem 1

We suppose that N ∈ Z+. By Jacobi’s triple product identity (1) we have

� 1
d
(t) =

∞∑

n=−∞
d−n2 tn .

Because t = a/b, we obtain that

(ab)NdN2
� 1

d
(t) = AN (d, t) + RN (d, t), (4)

where

AN (d, t) = (ab)NdN2 + (ab)N
N∑

n=1

dN2−n2
(
tn + 1

tn

)
∈ Z

and

RN (d, t) = (ab)N
∞∑

n=N+1

tn + 1
tn

dn2−N2 ∈ Q

[[
t,
1

t
,
1

d

]]
.

We write n = N + 1+ k. Since n2 − N 2 ≥ 2N + 1+ (2N + 3)k for all k ∈ Z≥0,
we get that

|RN (d, t)| ≤ |a|2N+1

|b||d|2N+1

∞∑

k=0

( |a|
|b||d|2N+3

)k

+ |b|2N+1

|a||d|2N+1

∞∑

k=0

( |b|
|a||d|2N+3

)k

= |a|2N+1

|b||d|2N+1 − |a|/|d|2 + |b|2N+1

|a||d|2N+1 − |b|/|d|2 .

Further, our assumption max{|a|, |b|} + 1 ≤ |d| implies that

|RN (d, t)| ≤ |a|2N+1

(|a| + 1)2N+1 − 1
+ |b|2N+1

(|b| + 1)2N+1 − 1

≤ |a|2N+1

|a|2N+1 + (2N + 1)|a|2N + |b|2N+1

|b|2N+1 + (2N + 1)|b|2N .
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We choose N̂ := (3max{|a|, |b|} − 1)/2. Then

|RN (d, t)| ≤ 1

2
(5)

for all N ≥ N̂ .
Let us denote


 := � 1
d
(t) − M

ds
.

By using (4) we obtain that

(ab)NdN2

 = AN (d, t) − (ab)N MdN2−s + RN (d, t),

where the main term

�N (t) := AN (d, t) − (ab)N MdN2−s

is a rational integer, assuming that N ≥ √
s. Because the determinant

∣∣∣∣∣
AN (d, t) (ab)NdN2

AN+1(d, t) (ab)N+1d(N+1)2

∣∣∣∣∣

= (ab)N+1d(N+1)2 AN (d, t) − (ab)NdN2
AN+1(d, t)

= (ab)2N+1dN2
d(N+1)2

(
N∑

n=1

d−n2
(
tn + 1

tn

)
−

N+1∑

n=1

d−n2
(
tn + 1

tn

))

= −(ab)2N+1dN2
(
t N+1 + 1

t N+1

)
�= 0,

we get that �N (t) �= 0 or �N+1(t) �= 0. We let now N be such that N̂ ≤ √
s ≤ N <√

s + 2 and �N (t) ∈ Z \ {0}. Hence,

1 ≤ |�N (t)| = |(ab)NdN2

 − RN (d, t)| ≤ |ab|N |d|N2 |
| + |RN (d, t)|.

By (5) we get the approximation

1 ≤ 2|ab|N |d|N2 |
| < 2|d|s(1+6/
√
s+8/s)|
|,

which completes the proof of Theorem 1.
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3 Proof of Theorem 2

We suppose that N ∈ Z+. By Euler’s pentagonal formula (2) we have

π1/d(1) = 1 +
∞∑

n=1

(−1)n
(
d−n(3n−1)/2 + d−n(3n+1)/2

)
.

Hence, we can write

dN (3N+1)/2π1/d(1) = AN (d) + RN (d), (6)

where

AN (d) = dN (3N+1)/2

+
N∑

n=1

(−1)n
(
dN (3N+1)/2−n(3n−1)/2 + dN (3N+1)/2−n(3n+1)/2

)
∈ Z[d],

and

RN (d) =
∞∑

n=N+1

(−1)n
(

1

dn(3n−1)/2−N (3N+1)/2
+ 1

dn(3n+1)/2−N (3N+1)/2

)

∈ Z[[1/d]].

By noting that (N + 1)(3(N + 1) − 1)/2− N (3N + 1)/2 = 2N + 1 we deduce that

|RN (d)| ≤ 1

|d|2N+1

∞∑

n=0

1

|d|n ≤ 2

|d|2N+1 ≤ 1

4
. (7)

Let us denote


 := π1/d(1) − M

ds
, (8)

where M ∈ Z, s ∈ Z+. By using (6) and (8), we get that

dN (3N+1)/2
 = AN (d) − MdN (3N+1)/2−s + RN (d),

where the term

�N := AN (d) − MdN (3N+1)/2−s

is an integer if N (3N + 1)/2 − s > 0. Additionally,

d � �N = (−1)N + (−1)NdN + · · · + dN (3N+1)/2 − MdN (3N+1)/2−s .
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Hence, �N �= 0 and further

1 ≤ |�N | = |dN (3N+1)/2
 − RN (d)| ≤ |d|N (3N+1)/2|
| + |RN (d)|.

By (7), we obtain that

1 < 2|
||d|N (3N+1)/2.

In particular, this lower bound holds when N is such that

(N − 1)(3N − 2)/2 ≤ s < N (3N + 1)/2.

In this case,

N (3N + 1)/2 = (N − 1)(3N − 2)/2 + 3N − 1

≤ s

(
1 + 3 + √

1 + 24s

2s

)
,

and we obtain Theorem 2.

4 Proof of Theorem 3

We suppose that N ∈ Z+. By (2), we have

πq(1) = 1 +
∞∑

n=1

(−1)n

⎛

⎝
(
1 − √

5

1 + √
5

)n(3n−1)/2

+
(
1 − √

5

1 + √
5

)n(3n+1)/2
⎞

⎠

= 1 +
∞∑

n=1

(
(−1)n+n(3n−1)/2

αn(3n−1)
+ (−1)n+n(3n+1)/2

αn(3n+1)

)
.

Hence, we can write

αN (3N+1)πq = AN (α) + RN (α), (9)

where

AN (α) = αN (3N+1) +
N∑

n=1

((−1)n+n(3n−1)/2αN (3N+1)−n(3n−1)

+(−1)n+n(3n+1)/2αN (3N+1)−n(3n+1)) ∈ Z[α],
(10)

123
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and

RN (α) =
∞∑

n=N+1

(
(−1)n+n(3n−1)/2

αn(3n−1)−N (3N+1)
+ (−1)n+n(3n+1)/2

αn(3n+1)−N (3N+1)

)
∈ Z[[1/α]].

By noting that (N + 1)(3(N + 1) − 1) − N (3N + 1) = 4N + 2, we deduce that

|RN (α)| ≤ 1

α4N+2

∞∑

n=0

1

αn
= 1

α4N+1(α − 1)
= 1

α4N . (11)

We denote


 := πq(1) − M

αs
. (12)

From Eqs. (9) and (12) we get that

αN (3N+1)
 = AN (α) − MαN (3N+1)−s + RN (α).

Because AN (α) ∈ Z[α] and M, α, 1/α ∈ ZK, we have

�N := AN (α) − MαN (3N+1)−s ∈ ZK.

Since the determinant
∣∣∣∣
AN (α) αN (3N+1)

AN+1(α) α(N+1)(3(N+1)+1)

∣∣∣∣ = α(N+1)(3(N+1)+1)AN (α) − αN (3N+1)AN+1(α)

= αN (3N+1)(−1)N+(N+1)(3N+2)/2
(
α2(N+1) + (−1)N+1

)

is non-zero. We have that �N �= 0 or �N+1 �= 0. So, we can choose N such that
�N ∈ ZK \ {0}. Hence, we have

1 ≤ |NK/Q(�N )| = |�N ||�N | = |αN (3N+1)
 − RN (α)||�N |. (13)

Let us bound from above the absolute value of the conjugate �N . First, we note
that

|�N | = |AN (α) − MαN (3N+1)−s | = |AN (α) − MαN (3N+1)−s |
≤ |AN (α)| + |M||α|N (3N+1)−s .

By using (10), we get that

|AN (α)| <

N (3N+1)∑

n=0

|α|n <

∞∑

n=0

|α|n = 1

1 + α
= α2.
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We can restrict the approximation to such numbers M/αs that

∣∣∣∣πq(1) − M

αs

∣∣∣∣ ≤ 1.

Because

πq(1) ∼ 1.226742 . . . ,

it is enough to consider numbers M/αs satisfying

0 < M/αs ≤ 2.226742 . . . < α2.

Now we suppose that N (3N + 1) ≥ 2s. Since |M| ≤ |M |, by our assumption, we
obtain that

|M||α|N (3N+1)−s ≤ |M |
∣∣∣∣
−1

α

∣∣∣∣
N (3N+1)−s

= |M |αs−N (3N+1) ≤ M

αs
< α2.

Hence,

|�N | < 2α2. (14)

Inequalities (13) and (14) imply now that

1

2α2 < αN (3N+1)|
| + |RN (α)|.

By (11), we have

|RN (α)| ≤ 1

α4 ,

which implies

1 < 2|
|α5αN (3N+1).

We fix an integer N̂ such that N̂ (3N̂ + 1) < 2s ≤ (N̂ + 1)(3(N̂ + 1) + 1). We can
now suppose that N is N̂ + 1 or N̂ + 2. Hence,

N (3N + 1) ≤ (N̂ + 2)(3(N̂ + 2) + 1) = N̂ (3N̂ + 1) + 12N̂ + 14

< s

(
2 + 12 + 2

√
1 + 24s

s

)
,

and we obtain Theorem 3.
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5 Remark

When the approximations M/N ∈ Q(
√
5) are not restricted, then there are better

approximations for general τ ∈ R\Q(
√
5). The ring of integers Z

Q(
√
5) = Z[ω],

where ω = 1+√
5

2 . We call the fraction

a + bω

c + dω
, a, b, c, d ∈ Z

primitive whenever the vector (a, b, c, d) is primitive, meaning gcd(a, b, c, d) = 1.

Lemma 1 Let τ ∈ R \ Q(
√
5). Then there exists an infinite sequence of primitive

fractions M/N ∈ Q(
√
5), where M, N ∈ Z

Q(
√
5), N �= 0, such that

∣∣∣∣τ − M

N

∣∣∣∣ <
9 + 4

√
5

|N |4 . (15)

Proof Let τ ∈ R \ Q(
√
5). Because 1, ω, τ and τω are linearly independent over

Q, there exists an infinite sequence of primitive integer 4–tuples (a, b, c, d) ∈ Z4 \
{(0, 0, 0, 0)} such that

|a + bω + cτ + dτω| <
1

H3 , (16)

where H = max{|b|, |c|, |d|} ≥ 1 (see Corollary 1D in [11, p. 27]). If c = d = 0,
then H = |b| ≥ 1 and

0 �= |a + bω| <
1

|b|3 .

Thus,

1 ≤ |(a + bω)(a + bω)| <
|a + bω|

|b|3 ≤
∣∣∣
√
5
∣∣∣

|b|2 + 1

|b|6

implying |b| = 1 and so |a| ≤ 2, contradicting the fact that there are infinitely many
(a, b, c, d). Hence there exists an infinite sequence of integer 4–tuples (a, b, c, d) ∈
Z4 \ {(0, 0, 0, 0)} satisfying (16) with (c, d) �= (0, 0). We also note that |c + dω| ≤
(1 + ω)H . Consequently,

∣∣∣∣τ − a + bω

c + dω

∣∣∣∣ <
1

H3|c + dω| ≤ (1 + ω)3

|c + dω|4 = 9 + 4
√
5

|c + dω|4 ,

which completes the proof . 
�
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The above bound (15) is a variation of the fundamental result presented in e.g. [11, p.
253].
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