Skip to main content
Log in

Computable structural formulas for the distribution of the \(\beta \)-Jacobi edge eigenvalues

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The Jacobi ensemble is one of the classical ensembles of random matrix theory. Prominent in applications are properties of the eigenvalues at the spectrum edge, specifically the distribution of the largest (e.g. Roy’s largest root test in multivariate statistics) and smallest (e.g. condition numbers of linear systems) eigenvalues. We identify three ranges of parameter values for which the gap probability determining these distributions is a finite sum with respect to particular bases, and moreover make use of a certain differential–difference system fundamental in the theory of the Selberg integral to provide a recursive scheme to compute the corresponding coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availibility

The data that support the findings of this study can be generated using the supplementary Mathematica files available in the arXiv repository [https://arxiv.org/src/2006.02238/anc].

Notes

  1. These references have \(\alpha \) replaced by \(\alpha - 1\) relative to our (2.1).

References

  1. Akemann, G., Guhr, T., Kieburg, M., Wegner, R., Wirtz, T.: Completing the picture for the smallest eigenvalue of real Wishart matrices. Phys. Rev. Lett. 113, (2014)

  2. Anderson, T.W.: An Introduction to Multivariate Statistics. Wiley, New York (1958)

    Google Scholar 

  3. Aomoto, K.: Jacobi polynomials associated with Selberg’s integral. SIAM J. Math. Anal. 18, 545–549 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aomoto, K., Kita, M.: Theory of Hypergeometric Functions. Springer, Tokyo (2011)

    Book  MATH  Google Scholar 

  5. Askey, R.: Orthogonal polynomials and special functions. In: Regional Conference Series in Applied Math., vol. 21. SIAM (1975)

  6. Askey, R.: Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11, 938–951 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Askey, R.: Letter to the SIAM minisymposium “Problems and solutions in special functions”. In: OP-SF NET 5.5 (Web resource) (1998)

  8. Baker, T.H., Forrester, P.J.: The Calogero–Sutherland model and generalized classical polynomials. Commun. Math. Phys. 188, 175–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bornemann, F.: On the numerical evaluation of distributions in random matrix theory: a review. Markov Process. Relat. Fields 16, 803–866 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Chiani, M.: Distribution of the largest root of a matrix for Roy’s test in multivariate analysis of variance. J. Multivar. Anal. 143, 467–471 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Collins, B.: Product of random projections, Jacobi ensembles and universality problems arising from free probability. Prob. Theory Rel. Fields 133, 315–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, A.W.: On the marginal distributions of the latent roots of the multivariable beta matrix. Ann. Math. Statist. 43, 1664–1669 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diaconis, P., Forrester, P.J.: Hurwitz and the origin of random matrix theory in mathematics. Random Matrix Theory Appl. 6, 1730001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dumitriu, I.: Smallest eigenvalue distribution of two classes of \(\beta \)-Jacobi ensembles. J. Math. Phys. 53, (2012)

  15. Edelman, A.: The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type. Lin. Alg. Appl. 159, 55–80 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Edelman, A., Sutton, B.D.: The beta-Jacobi matrix model, the CS decomposition, and generalized singular value problems. Found. Comput. Math. 8, 259–285 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Forrester, P.J.: Recurrence equations for the computation of correlations in the \(1/r^2\) quantum many body system. J. Stat. Phys. 72, 39–50 (1993)

    Article  MATH  Google Scholar 

  18. Forrester, P.J.: Quantum conductance problems and the Jacobi ensemble. J. Phys. A 39, 6861–6870 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton, NJ (2010)

    Book  MATH  Google Scholar 

  20. Forrester, P.J.: Large deviation eigenvalue density for the soft edge Laguerre and Jacobi \(\beta \)-ensembles. J. Phys. A: Math. Theor. 45, (2012)

  21. Forrester, P.J., Hughes, T.D.: Complex Wishart matrices and conductance in mesoscopic systems: exact results. J. Math. Phys. 35, 6736–6747 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Forrester, P.J., Ito, M.: Difference system for Selberg correlation integrals. J. Phys. A: Math. Theor. 43, (2010)

  23. Forrester, P.J., Kumar, S.: Recursion scheme for the largest \(\beta \)-Wishart-Laguerre eigenvalue and Landauer conductance in quantum transport. J. Phys. A 52, 42LT02 (2019)

  24. Forrester, P.J., Trinh, A.K.: Optimal soft edge scaling variables for the Gaussian and Laguerre even ensembles. Nucl. Phys. B 938, 621–639 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Forrester, P.J., Trinh, A.K.: Finite size corrections at the hard edge for the Laguerre \(\beta \) ensemble. Stud. Appl. Math. 143, 315–336 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Forrester, P.J., Rains, E.M.: A Fuchsian matrix differential equation for Selberg correlation integrals. Commun. Math. Phys. 309, 771 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Forrester, P.J., Warnaar, S.O.: The importance of the Selberg integral. Bull. Am. Math. Soc. 45, 489–534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Holcomb, D., Flores, G.R.M.: Edge Scaling of the \(\beta \)-Jacobi ensemble. J. Stat. Phys. 149, 1136–1160 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. James, A.T.: Special functions of matrix and single argument in statistics. In: Askey, R.A. (ed.) Theory and Applications of Special Functions, pp. 497–520. Academic, New York (1975)

  30. Johnstone, I.M.: Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy–Widom limits and rates of convergence. Ann. Stat. 36, 2638–2716 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Johnstone, I.M., Nadler, B.: Roy’s largest root test under rank-one alternatives. Biometrika 104, 181–193 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Kaneko, J.: Selberg integrals and hypergeometric functions associated with Jack polynomials. SIAM J. Math Anal. 24, 1086–1110 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kumar, S.: Recursion for the smallest eigenvalue density of \(\beta \)-Wishart–Laguerre ensemble. J. Stat. Phys. 175, 126 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Majumdar, S.N., Pal, A., Schehr, G.: Extreme eigenvalue statistics of correlated random variables: a pedagogical review. Phys. Rep. 840, 1–32 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Majumdar, S.N., Schehr, G.: Top eigenvalue of a random matrix: large deviations and third order phase transition. J. Stat. Mech. 2014, P01012 (2014)

  36. Mehta, M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York (1967)

    MATH  Google Scholar 

  37. Mehta, M.L.: Problem 74–6, Three multiple integrals. SIAM Rev. 16, 256–257 (1974)

    Article  Google Scholar 

  38. Mehta, M.L., Dyson, F.J.: Statistical theory of the energy levels of complex systems. V. J. Math. Phys. 4, 713–719 (1963)

  39. Moreno-Pozas, L., Morales-Jimenez, D., McKay, M.R.: Extreme eigenvalue distributions of Jacobi ensembles: new exact representations, asymptotics and finite size corrections. Nucl. Phys. B 947 (2019)

  40. Morris, W.G.: Constant term identities for finite and affine root systems: conjectures and theorems. Ph.D. thesis, Univ. Wisconsin–Madison (1982)

  41. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  42. Nagao, T., Forrester, P.J.: The smallest eigenvalue distribution at the spectrum edge of random matrices. Nucl. Phys. B 509, 561–598 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ostrovsky, D.: A review of conjectured laws of total mass of Bacry-Muzy GMC measures on the interval and circle and their applications. Rev. Math. Phys. 30, 1830003 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rumanov, I.: Painlevé representation of Tracy–Widom\({}_\beta \) distribution for \(\beta = 6\). Commun. Math. Phys. 342, 843–868 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Selberg, A.: Bemerkninger om et multipelt integral. Norsk. Mat. Tidsskr. 24, 71–78 (1944)

    Google Scholar 

  46. Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163, 33–72 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Additional information

To the memory of Richard Askey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P.J.F. acknowledges support from the Australian Research Council (ARC) through the ARC Centre of Excellence for Mathematical & Statistical Frontiers, and the Discovery Project grant DP210102887.

Appendix

Appendix

The \(\beta \)-circular ensemble (1.21) is a particular case of the (generalised) circular Jacobi \(\beta \)-ensemble. The latter is specified by the family of probability density functions on the unit circle proportional to

$$\begin{aligned} \prod _{l=1}^N \chi _{-\pi< \theta _l< \pi } \,e^{b_2 \theta _l} |1 + e^{i \theta _l} |^{2 b_1} \prod _{1 \le j < k \le N} | e^{i \theta _k} - e^{i \theta _j} |^\beta ; \end{aligned}$$
(A.1)

thus we set \(b_1 = b_2 = 0\). Introducing \(\xi _l = e^{i \theta _l}\) \((l=1,\dots ,N)\), and temporarily requiring that \(b_1\) and \(\beta /2\) be positive integer, the measure associated with (A.1) maps to the measure proportional to

$$\begin{aligned} \prod _{l=1}^N \xi _l^{{\tilde{\lambda }}_1} (1 - \xi _l)^{{\tilde{\lambda }}_2} \prod _{1 \le j < k \le N} (\xi _k - \xi _j)^\beta d \xi _1 \cdots d \xi _N \end{aligned}$$
(A.2)

with

$$\begin{aligned} {\tilde{\lambda }}_1 = - b_1 - 1 - (\beta /2) (N-1), \qquad {\tilde{\lambda }}_2 = b_1 + i b_2. \end{aligned}$$
(A.3)

In particular, this tells us that the averages

$$\begin{aligned} \Big \langle \prod _{l=1}^N ( x- e^{i \theta _l})^\alpha {e_p(x-e^{i \theta _1},\dots ,x-e^{i \theta _N}}) \Big \rangle \end{aligned}$$
(A.4)

with respect to (A.1) satisfy the same recurrences (2.2) as the corresponding averages (2.1) for the Jacobi ensemble. We remark that this same conclusion can be reached by direct application of integration by parts as used in [17, 19, §4.6], without the need to assume \(b_1\) and \(\beta /2\) are positive integers.

We would like to make use of the recurrences satisfied by (A.4) to provide a recursive computational scheme for the circular ensemble gap probability

$$\begin{aligned}&E_N^{\mathrm{C}}(0;(0,\phi );\beta )\nonumber \\&\quad = \lim _{\mu \rightarrow 0} {1 \over {\mathcal {N}}_{\beta ,N}} \int _\phi ^{2 \pi } d \theta _1 \cdots \int _\phi ^{2 \pi } d \theta _N \, \prod _{l=1}^N e^{i \theta _l \mu } \prod _{1 \le j < k \le N} | e^{i \theta _k} - e^{i \theta _j} |^\beta , \end{aligned}$$
(A.5)

where the parameter \(\mu \) is introduced for later convenience. As for the Jacobi gap probability \(E_N^{\mathrm{J}}(0;(s,1);\lambda _1,\lambda _2,\beta )\) in the parameter range (3), the case of \(\beta \) a positive integer is special in this regard. Thus, with the ordering

$$\begin{aligned} R_N: \, \, 2 \pi> \theta _1> \theta _2> \cdots> \theta _N > \phi , \end{aligned}$$
(A.6)

analogous to (1.14) we have

$$\begin{aligned} \prod _{1 \le j< k \le N} | e^{i \theta _k} - e^{i \theta _j} |^\beta = \chi \prod _{l=1}^N e^{-i\theta _l \beta (N-1)/2} \prod _{1 \le j < k \le N} (e^{i \theta _j} - e^{i \theta _k} )^\beta , \end{aligned}$$
(A.7)

where here \(\chi \) is a phase factor, \(|\chi | = 1\), which has a polynomial structure. In particular for \(\beta \) a positive integer, the multidimensional integral is a finite series in powers of \(e^{i \phi }\), although taking the limit \(\mu \rightarrow 0\) will introduce factors which are polynomials in \(\phi \) itself.

From the working of the above paragraph, it suffices to specify a computational scheme for the integrals

$$\begin{aligned} \int _{R_N} d \theta _1 \cdots d \theta _N \, \prod _{l=1}^N e^{i \theta _l {\tilde{\mu }}} \prod _{1 \le j < k \le N} ( e^{i \theta _j} - e^{i \theta _k} )^\beta . \end{aligned}$$
(A.8)

This is done as for the computation of \(E_N^{\mathrm{J}}(0;(s,1);\lambda _1,\lambda _2,\beta )\) in the parameter range (3), as detailed in the discussion about (2.27). Actually it is a little simpler, since instead of making repeated use of (1.16), we only require use of

$$\begin{aligned} \int _0^\phi d \theta \, e^{i \theta \nu } = {1 \over i \nu } (e^{i \phi \nu } - 1). \end{aligned}$$

This one-dimensional integral is required for the initial condition \(N=1\), and then the evaluation of the case \(N=n\) of (A.8) from knowledge of the explicit fractional power series form of

$$\begin{aligned} \int _{R_{n-1}} d \theta _1 \cdots d \theta _{n-1} \, \prod _{l=1}^{n-1} e^{i \theta _l {\tilde{\mu }} } ( e^{i \theta _l} - e^{i \phi } )^\beta \prod _{1 \le j < k \le n-1} ( e^{i \theta _j} - e^{i \theta _k} )^\beta . \end{aligned}$$
(A.9)

This in turn is deduced from knowledge of the same expansion for the case \(N=n-1\) of (A.8), then applying the recurrence (2.2) with parameters compatible with (A.3).

For \(\beta \) even it is possible to establish a direct relation between \(E_N^{\mathrm{J}}(0;(s,1);\lambda _1,\lambda _2,\beta )\) and \(E_N^{\mathrm{C}}(0;(0,\phi );\beta )\). First, from the definitions we have

$$\begin{aligned}&E^{\mathrm{J}}_N(0;(s,1);0,\lambda _2,\beta ) = E^{\mathrm{J}}_N(0;(0,1-s);0,\lambda _2,\beta ) \\&\quad = {1 \over J_{N,\lambda _2,0,\beta }} \int _{1-s}^1 dx_1 \cdots \int _{1-s}^1 dx_N \, \prod _{l=1}^N x_l^{\lambda _2} \prod _{1 \le j < k \le N} | x_k - x_j|^\beta . \end{aligned}$$

For \(\beta \) even, the expansion (1.14) is valid without any need to order the variables. Substituting in the above gives the formula

$$\begin{aligned}&E^{\mathrm{J}}_N(0;(s,1);0,\lambda _2,\beta ) \nonumber \\&\quad = {1 \over J_{N,\lambda _2,0,\beta }} \sum _\kappa \alpha _\kappa \prod _{l=1}^N {1 \over \kappa _l + \lambda _2 + 1} \Big ( 1 - (1 - s)^{\kappa _l + \lambda _2 + 1} \Big ). \end{aligned}$$
(A.10)

Consider now \(E_N^{\mathrm{C}}\). From the definitions,

$$\begin{aligned}&E^{\mathrm{C}}_N(0;( 0,\phi );\beta ) = E^{\mathrm{C}}_N(0;( 2 \pi - \phi , 2 \pi );\beta ) \\&\quad = {1 \over {\mathcal {N}}_{\beta ,N}} \int _0^{2 \pi - \phi } d \theta _1 \cdots \int _0^{2 \pi - \phi } d \theta _N \, \prod _{1 \le j < k \le N} | e^{i \theta _k} - e^{i \theta _j} |^\beta . \end{aligned}$$

For \(\beta \) even we can use the expansion (A.7) without the need to impose the ordering (A.6). This shows

$$\begin{aligned}&E^{\mathrm{C}}_N(0;( 0,\phi );\beta ) \nonumber \\&\quad = {{\tilde{\chi }} \over {\mathcal {N}}_{\beta ,N}} \lim _{\mu \rightarrow 0} \sum _\kappa \alpha _\kappa \prod _{l=1}^N {1 \over (\mu - (N-1) \beta /2 + \kappa _l } \Big (1 - e^{- i \phi (\mu - (N-1) \beta /2 + \kappa _l } \Big ),\nonumber \\ \end{aligned}$$
(A.11)

where \({\tilde{\chi }} \) has modulus 1. Comparison of (A.10) and (A.11) shows that for \(\beta \) even we can map from \( E^{\mathrm{J}}_N\) to \(E^{\mathrm{C}}_N\) by setting \(\lambda _2 +1= \mu - (N-1) \beta /2\) and \(1 - s = e^{- i \phi }\), then taking the limit \(\mu \rightarrow 0\) and adjusting the normalisation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forrester, P.J., Kumar, S. Computable structural formulas for the distribution of the \(\beta \)-Jacobi edge eigenvalues. Ramanujan J 61, 87–110 (2023). https://doi.org/10.1007/s11139-021-00493-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00493-w

Keywords

Mathematics Subject Classification

Navigation