Skip to main content
Log in

Patient adherence and response time in electronic patient-reported outcomes: insights from three longitudinal clinical trials

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

Patient-reported outcome measures (PROMs) are used to collect data on disease symptoms in support of clinical trial endpoints. Clinical studies can last a year or more, and the patients’ adherence and response time to daily at-home questionnaires may vary significantly over time. The aim of this study was to understand patterns and changes in patients’ completion of daily PROMs during longitudinal clinical studies.

Methods

Data were collected from 1342 patients randomized into three respiratory clinical trials (NCT03401229, NCT03347279, and NCT03406078). PROMs were completed by patients using electronic handheld devices that collected the starting and completion times. A Bayesian generalized linear mixed-effects model was used to identify unbiased coefficients associated with PROM adherence and response time using patient, site, and calendar features as covariates.

Results

Adherence decreased over time after randomization, and the rate of decrease was higher in younger patients. The 14-day pre-randomization adherence was correlated with adherence throughout the study. Patients were also more adherent during working days compared to non-working days. Oldest patients took twice as long to complete PROMs throughout the study; however, the response time for all patients decreased during the first month of the study regardless of age. Response time increased 7 days before and after the date of a scheduled clinic visit and when a patient-reported higher symptom burden.

Conclusion

Detailed analyses of adherence and response time for daily PROMs in clinical trials can provide significant insights about trends of patient behavior in longitudinal clinical studies with high baseline adherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data underlying the findings described in this manuscript may be obtained in accordance with AstraZeneca’s data sharing policy described at https://astrazenecagrouptrials.pharmacm.com/ST/Submission/Disclosure. Data for studies directly listed on Vivli can be requested through Vivli at www.vivli.org. Data for studies not listed on Vivli could be requested through Vivli at https://vivli.org/members/enquiries-about-studies-not-listed-on-the-vivli-platform/. AstraZeneca Vivli member page is also available outlining further details: https://vivli.org/ourmember/astrazeneca/.

References

  1. US Food and Drug Administration, ‘Guidance for industry: Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims’. (2009 Dec). Accessed: 31 Oct 2022. [Online]. Available: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-reported-outcome-measures-use-medical-product-development-support-labeling-claims

  2. Weldring, T., & Smith, S. M. S. (2013). Patient-reported outcomes (PROs) and patient-reported outcome measures (PROMs). Health Services Insights, 6, 61–68. https://doi.org/10.4137/HSI.S11093

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mercieca-Bebber, R., King, M. T., Calvert, M. J., Stockler, M. R., & Friedlander, M. (2018). The importance of patient-reported outcomes in clinical trials and strategies for future optimization. Patient Related Outcome Measures, 9, 353–367. https://doi.org/10.2147/PROM.S156279

    Article  PubMed  PubMed Central  Google Scholar 

  4. Au, H.-J., Ringash, J., Brundage, M., Palmer, M., Richardson, H., & Meyer, R. M. (2010). Added value of health-related quality of life measurement in cancer clinical trials: The experience of the NCIC CTG. Expert Review of Pharmacoeconomics & Outcomes Research, 10(2), 119–128. https://doi.org/10.1586/erp.10.15

    Article  Google Scholar 

  5. Basch, E., Deal, A. M., Kris, M. G., Scher, H. I., Hudis, C. A., Sabbatini, P., Rogak, L., Bennett, A. V., Dueck, A. C., Atkinson, T. M., Chou, J. F., Dulko, D., Sit, L., Barz, A., Novotny, P., Fruscione, M., Sloan, J. A., & Schrag, D. (2016). Symptom monitoring with patient-reported outcomes during routine cancer treatment: A randomized controlled trial. Journal of Clinical Oncology, 34(6), 557–565. https://doi.org/10.1200/JCO.2015.63.0830

    Article  CAS  PubMed  Google Scholar 

  6. Etkind, S. N., Daveson, B. A., Kwok, W., Witt, J., Bausewein, C., Higginson, I. J., & Murtagh, F. E. M. (2015). Capture, transfer, and feedback of patient-centered outcomes data in palliative care populations: Does it make a difference? A systematic review. Journal of Pain and Symptom Management, 49(3), 611–624. https://doi.org/10.1016/j.jpainsymman.2014.07.010

    Article  PubMed  Google Scholar 

  7. Coons, S. J., Eremenco, S., Lundy, J. J., O’Donohoe, P., O’Gorman, H., & Malizia, W. (2015). Capturing patient-reported outcome (PRO) data electronically: The past, present, and promise of ePRO measurement in clinical trials. The Patient, 8(4), 301–309. https://doi.org/10.1007/s40271-014-0090-z

    Article  PubMed  Google Scholar 

  8. Rosa, C., Campbell, A. N. C., Miele, G. M., Brunner, M., & Winstanley, E. L. (2015). Using e-technologies in clinical trials. Contemporary Clinical Trials, 45(Pt A), 41–54. https://doi.org/10.1016/j.cct.2015.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stone, A. A., Shiffman, S., Schwartz, J. E., Broderick, J. E., & Hufford, M. R. (2003). Patient compliance with paper and electronic diaries. Controlled Clinical Trials, 24(2), 182–199. https://doi.org/10.1016/s0197-2456(02)00320-3

    Article  PubMed  Google Scholar 

  10. Lane, S. J., Heddle, N. M., Arnold, E., & Walker, I. (2006). A review of randomized controlled trials comparing the effectiveness of hand held computers with paper methods for data collection. BMC Medical Informatics and Decision Making, 6, 23. https://doi.org/10.1186/1472-6947-6-23

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ganser, A. L., Raymond, S. A., & Pearson, J. D. (2010). Data quality and power in clinical trials: A comparison of ePRO and paper in a randomized trial. ePro: Electronic solutions for patient-reported data by tiplady B and byrom B (pp. 49–78). Routledge.

    Google Scholar 

  12. Rintala, A., Wampers, M., Myin-Germeys, I., & Viechtbauer, W. (2019). Response compliance and predictors thereof in studies using the experience sampling method. Psychological Assessment, 31(2), 226–235. https://doi.org/10.1037/pas0000662

    Article  PubMed  Google Scholar 

  13. Di Fraia, M., Tripodi, S., Arasi, S., Dramburg, S., Castelli, S., Villalta, D., Buzzulini, F., Sfika, I., Villella, V., Potapova, E., Perna, S., Brighetti, M. A., Travaglini, A., Verardo, P., Pelosi, S., Zicari, A. M., & Matricardi, P. M. (2020). Adherence to prescribed E-diary recording by patients with seasonal allergic rhinitis: Observational study. Journal of Medical Internet Research, 22(3), e16642. https://doi.org/10.2196/16642

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jones, S. E., Moore, R. C., Pinkham, A. E., Depp, C. A., Granholm, E., & Harvey, P. D. (2021). A cross-diagnostic study of adherence to ecological momentary assessment: Comparisons across study length and daily survey frequency find that early adherence is a potent predictor of study-long adherence. Personalized Medicine in Psychiatry, 29–30, 100085. https://doi.org/10.1016/j.pmip.2021.100085

    Article  PubMed  PubMed Central  Google Scholar 

  15. Morren, M., van Dulmen, S., Ouwerkerk, J., & Bensing, J. (2009). Compliance with momentary pain measurement using electronic diaries: A systematic review. European Journal of Pain, 13(4), 354–365. https://doi.org/10.1016/j.ejpain.2008.05.010

    Article  PubMed  Google Scholar 

  16. Grüne, B., Menold, H., Lenhart, M., Mühlbauer, J., Walach, M. T., Waldbillig, F., Neuberger, M., Nuhn, P., Michel, M. S., Koenig, J., Kriegmair, M. C., & Wessels, F. (2023). Patient compliance in assessing electronic patient-reported outcome measures after urologic surgery. Urologia Internationalis, 107(3), 280–287. https://doi.org/10.1159/000520755

    Article  PubMed  Google Scholar 

  17. Glimmerveen, A., Holewijn, S., & Vermeer, S. (2023). Association between clinician reported outcome and patient reported outcome measures one year after stroke. Journal of Stroke and Cerebrovascular Diseases, 32(8), 107156. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107156

    Article  PubMed  Google Scholar 

  18. Aiyegbusi, O. L., Roydhouse, J., Rivera, S. C., Kamudoni, P., Schache, P., Wilson, R., Stephens, R., & Calvert, M. (2022). Key considerations to reduce or address respondent burden in patient-reported outcome (PRO) data collection. Nature Communications, 13, 6026. https://doi.org/10.1038/s41467-022-33826-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bodart, S., Byrom, B., Crescioni, M., Eremenco, S., & Flood, E. (2019). Perceived burden of completion of patient-reported outcome measures in clinical trials: Results of a preliminary study. Therapeutic Innovation & Regulatory Science, 53(3), 318–323. https://doi.org/10.1177/2168479018788053

    Article  Google Scholar 

  20. Atkinson, T. M., Schwartz, C. E., Goldstein, L., Garcia, I., Storfer, D. F., Li, Y., Zhang, J., Bochner, B. H., & Rapkin, B. D. (2019). Perceptions of response burden associated with completion of patient-reported outcome assessments in oncology. Value in Health, 22(2), 225–230. https://doi.org/10.1016/j.jval.2018.07.875

    Article  PubMed  Google Scholar 

  21. Nowojewski, A., Bark, E., Shih, V. H., O’Quinn, S., & Dearden, R. (2023). Leveraging ePRO paradata for patient-centered trial designs. Value & Outcomes Spotlight, 9(6), 29–31.

    Google Scholar 

  22. Bachert, C., Han, J. K., Desrosiers, M. Y., Gevaert, P., Heffler, E., Hopkins, C., Tversky, J. R., Barker, P., Cohen, D., Emson, C., Martin, U. J., Shih, V. H., Necander, S., Kreindler, J. L., Jison, M., & Werkström, V. (2022). Efficacy and safety of benralizumab in chronic rhinosinusitis with nasal polyps: A randomized, placebo-controlled trial. The Journal of Allergy and Clinical Immunology, 149(4), 1309-1317.e12. https://doi.org/10.1016/j.jaci.2021.08.030

    Article  CAS  PubMed  Google Scholar 

  23. Menzies-Gow, A., Corren, J., Bourdin, A., Chupp, G., Israel, E., Wechsler, M. E., Brightling, C. E., Griffiths, J. M., Hellqvist, Å., Bowen, K., Kaur, P., Almqvist, G., Ponnarambil, S., & Colice, G. (2021). Tezepelumab in adults and adolescents with severe, uncontrolled asthma. The New England Journal of Medicine, 384(19), 1800–1809. https://doi.org/10.1056/NEJMoa2034975

    Article  CAS  PubMed  Google Scholar 

  24. Wechsler, M. E., Menzies-Gow, A., Brightling, C. E., Kuna, P., Korn, S., Welte, T., Griffiths, J. M., Sałapa, K., Hellqvist, Å., Almqvist, G., Lal, H., Kaur, P., Skärby, T., Colice, G., & SOURCE study group. (2022). Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): A randomised, placebo-controlled, phase 3 study. The Lancet. Respiratory Medicine, 10(7), 650–660. https://doi.org/10.1016/S2213-2600(21)00537-3

    Article  CAS  PubMed  Google Scholar 

  25. O’Quinn, S., Shih, V. H., Martin, U. J., Meyers, O., Crooks, P., Bailey, J., & Slagle, A. F. (2022). Measuring the patient experience of chronic rhinosinusitis with nasal polyposis: Qualitative development of a novel symptom diary. International Forum of Allergy & Rhinology, 12(8), 996–1005. https://doi.org/10.1002/alr.22952

    Article  Google Scholar 

  26. Globe, G., Martin, M., Schatz, M., Wiklund, I., Lin, J., von Maltzahn, R., & Mattera, M. S. (2015). Symptoms and markers of symptom severity in asthma—Content validity of the asthma symptom diary. Health and Quality of Life Outcomes, 13, 21. https://doi.org/10.1186/s12955-015-0217-5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Globe, G., Wiklund, I., Lin, J., Chen, W.-H., Martin, M., Mattera, M. S., von Maltzahn, R., Feng, J. Y., Chon, Y., Viswanathan, H. N., & Schatz, M. (2016). Psychometric properties of the asthma symptom diary (ASD), a diary for use in clinical trials of persistent asthma. The Journal of Allergy and Clinical Immunology in Practice, 4(1), 60-66.e4. https://doi.org/10.1016/j.jaip.2015.07.008

    Article  PubMed  Google Scholar 

  28. Globe, G., Wiklund, I., Mattera, M., Zhang, H., & Revicki, D. A. (2019). Evaluating minimal important differences and responder definitions for the asthma symptom diary in patients with moderate to severe asthma. Journal of Patient-Reported Outcomes, 3(1), 22. https://doi.org/10.1186/s41687-019-0109-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moineddin, R., Matheson, F. I., & Glazier, R. H. (2007). A simulation study of sample size for multilevel logistic regression models. BMC Medical Research Methodology, 7, 34. https://doi.org/10.1186/1471-2288-7-34

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gomes, D. G. E. (2022). Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model? PeerJ, 10, e12794. https://doi.org/10.7717/peerj.12794

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Webster, S., Cameron-Blake, E., Hallas, L., Majumdar, S., & Tatlow, H. (2021). A global panel database of pandemic policies (Oxford COVID-19 government response tracker). Nature Human Behaviour, 5(4), 529–538. https://doi.org/10.1038/s41562-021-01079-8

    Article  PubMed  Google Scholar 

  32. Edouard Mathieu, Hannah Ritchie, Lucas Rodés-Guirao, Cameron Appel, Charlie Giattino, Joe Hasell, Bobbie Macdonald, Saloni Dattani, Diana Beltekian, Esteban Ortiz-Ospina, & Max Roser. (2020). Coronavirus Pandemic (COVID-19) https://ourworldindata.org/coronavirus

  33. Stan Development Team. (2023). Stan Modeling Language Users Guide and Reference Manual, 2.32. Available: https://mc-stan.org

  34. Kruschke, J. K. (2021). Bayesian analysis reporting guidelines. Nature Human Behaviour, 5(10), 1282–1291. https://doi.org/10.1038/s41562-021-01177-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal Royal Meteorological Society, 81(348), 158–171. https://doi.org/10.1002/qj.49708134804

    Article  Google Scholar 

  36. Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society Series C, 54(3), 507–554.

    Article  Google Scholar 

  37. Benedetti, A., Platt, R., & Atherton, J. (2014). Generalized linear mixed models for binary data: Are matching results from penalized quasi-likelihood and numerical integration less biased? PLoS ONE, 9(1), e84601. https://doi.org/10.1371/journal.pone.0084601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika, 61(3), 439–447. https://doi.org/10.1093/biomet/61.3.439

    Article  Google Scholar 

  39. Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. Scotts Valley, CreateSpace.

  40. R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available: https://www.R-project.org/

  41. Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411.

    Article  Google Scholar 

  42. Pratap, A., Neto, E. C., Snyder, P., Stepnowsky, C., Elhadad, N., Grant, D., Mohebbi, M. H., Mooney, S., Suver, C., Wilbanks, J., Mangravite, L., Heagerty, P. J., Areán, P., & Omberg, L. (2020). Indicators of retention in remote digital health studies: A cross-study evaluation of 100,000 participants. NPJ Digital Medicine, 3, 21. https://doi.org/10.1038/s41746-020-0224-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kim, S. J., Kwon, O. D., Han, E. B., Lee, C. M., Oh, S.-W., Joh, H.-K., Oh, B., Kwon, H., Cho, B., & Choi, H. C. (2019). Impact of number of medications and age on adherence to antihypertensive medications. Medicine, 98(49), e17825. https://doi.org/10.1097/MD.0000000000017825

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brysbaert, M. (2019). How many words do we read per minute? A review and meta-analysis of reading rate. Journal of Memory and Language, 109, 104047.

    Article  Google Scholar 

  45. Therrien, W. J. (2004). Fluency and comprehension gains as a result of repeated reading: A meta-analysis. Remedial and Special Education, 25(4), 252–261.

    Article  Google Scholar 

  46. Chang, A.-S., & Millett, S. (2013). Improving reading rates and comprehension through timed repeated reading. Reading in Foreign Language, 25(2), 126–148.

    Google Scholar 

  47. Trauzettel-Klosinski, S., Dietz, K., & IReST Study Group. (2012). Standardized assessment of reading performance: The new international reading speed texts IReST. Investigative Opthalmology & Visual Science, 53(9), 5452–5461. https://doi.org/10.1167/iovs.11-8284

    Article  Google Scholar 

  48. Chmykhova, E., Davydov, D., & Lavrova, T. (2014). The factors of the reading speed: An experimental study. Пcиxoлoгия Oбyчeния, 9, 26–36.

    Google Scholar 

  49. Kieffer, M. J. (2010). Socioeconomic status, English proficiency, and late-emerging reading difficulties. Educational Researcher, 36(6), 484–486.

    Article  Google Scholar 

  50. Deutscher, D., Weil, C., Chodick, G., Tsukinovsky, S., Bodger, K., Waterman, M., & Kariv, R. (2023). Implementing electronic patient reported outcomes in inflammatory bowel disease: Patient participation, score reliability and validity. Health and Quality of Life Outcomes, 21(1), 2. https://doi.org/10.1186/s12955-023-02087-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Romina Dennehy and Davorin Miletic of Clario (formerly ERT) for providing us the timestamped ePROM data on an ad hoc basis. We also appreciate Sean O’Quinn, William Dott, and Olga Elizarova of AstraZeneca as well as Priyanka Sen for proofreading and commenting on the manuscript.

Funding

AstraZeneca sponsored the clinical studies and also funded this work.

Author information

Authors and Affiliations

Authors

Contributions

AN, EB, VHS, and RD designed and directed the project. EB and VHS obtained the datasets. AN designed and executed the analysis. EB and VHS validated the results. AN wrote the manuscript with critical review and input from all authors. The final manuscript was reviewed and approved for submission by all authors.

Corresponding author

Correspondence to Andrzej Nowojewski.

Ethics declarations

Competing interest

All authors are or were employees and shareholders of AstraZeneca at the time of study conduct.

Ethical approval

The details of the design and results of the OSTRO, NAVIGATOR, and SOURCE trials have been previously reported (ClinicalTrials.gov Identifiers: NCT03401229 [22], NCT03347279 [23], and NCT03406078 [24]). The protocols were approved by the independent ethics committee at each participating site, and all patients provided written informed consent. A review process was followed that ensured that the proposed analysis was within the scope of original approvals and signed informed consent forms (INT-20211208–893, 8 December 2021). This study used existing fully de-identified data and the investigators or patients could not be identified, directly or through identifiers linked to patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11287 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowojewski, A., Bark, E., Shih, V.H. et al. Patient adherence and response time in electronic patient-reported outcomes: insights from three longitudinal clinical trials. Qual Life Res (2024). https://doi.org/10.1007/s11136-024-03644-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11136-024-03644-w

Keywords

Navigation