Skip to main content
Log in

Antioxidant and Renin Inhibitory Activities of Peptides from Food Proteins on Hypertension: A Review

  • Review
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Hypertension is a condition induced by oxidative stress causing an alteration in the endothelium, which increases the risk of suffering from other degenerative diseases. This review compiles the findings on peptides from food proteins with antioxidant and antihypertensive activities. Antihypertensive peptides are mainly focused on renin inhibition. Peptides containing hydrophobic amino acids have antioxidant and renin inhibitory activities, as reported by studies on the biological activity of peptides from various food sources evaluated separately and simultaneously. Peptides from food sources can present multiple biological activities. Moreover, antioxidant peptides have the potential to be evaluated against renin, offering an alternative for hypertension therapy without causing adverse side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data is available in public repositories that issue datasets with DOIs (provided in references).

References

  1. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol - Lung Cell Mol Physiol 279(6):L1005–L1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005

  2. Brieger K, Schiavone S, Miller FJ, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659. https://doi.org/10.4414/smw.2012.13659

    Article  CAS  PubMed  Google Scholar 

  3. Olagunju AI, Omoba OS, Enujiugha VN, Alashi AM, Aluko RE (2018) Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Sci Nutr 6(7):1879–1889. https://doi.org/10.1002/fsn3.740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Malomo SA, Onuh JO, Girgih AT, Aluko RE (2015) Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates. Nutrients 7(9):7616–7632. https://doi.org/10.3390/nu7095358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aluko RE (2018) Food protein-derived renin-inhibitory peptides: in vitro and in vivo properties. J Sci Food Agric 43(1):e12648. https://doi.org/10.1111/jfbc.12648

    Article  CAS  Google Scholar 

  6. Udenigwe CC, Aluko RE (2012) Multifunctional cationic peptides fractions from flaxseed protein hydrolysates. Plant Food Hum Nutr 67:1–9. https://doi.org/10.1007/s11130-012-0275-3

    Article  CAS  Google Scholar 

  7. Chen ML, Ning P, Jiao Y, Xu Z, Cheng Y-H (2021) Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chem 337:128069. https://doi.org/10.1016/j.foodchem.2020.128069

    Article  CAS  PubMed  Google Scholar 

  8. Sheng J, Yang X, Chen J et al (2019) Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal hydrolysate. J Agric Food Chem 337:128069. https://doi.org/10.1021/acs.jafc.8b05722

    Article  CAS  Google Scholar 

  9. Fitzgerald C, Mora-soler L, Gallagher E et al (2012) Isolation and characterization of bioactive pro-peptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata. J Agric Food Chem 60(30):7421–7427. https://doi.org/10.1021/jf301361c

    Article  CAS  PubMed  Google Scholar 

  10. Lafarga T, Aluko RE, Rai DK, O’Connor P, Hayes M (2016) Identification of bioactive peptides from a papain hydrolysate of bovine serum albumin and assessment of an antihypertensive effect in spontaneously hypertensive rats. Food Res Int 81:91–99. https://doi.org/10.1016/j.foodres.2016.01.007

    Article  CAS  Google Scholar 

  11. Udenigwe CC, Girgih AT, Mohan A, Gong M, Malomo SA, Aluko RE (2017) Antihypertensive and bovine plasma oxidation-inhibitory activities of spent hen meat protein hydrolysates. J Food Biochem 41(4):1–8. https://doi.org/10.1111/jfbc.12378

    Article  CAS  Google Scholar 

  12. Pinciroli M, Aphalo P, Nardo AE, Añón MC, Quiroga AV (2019) Broken rice as a potential functional ingredient with inhibitory activity of renin and angiotensin-converting enzyme (ACE). Plant Foods Hum Nutr 74:405–413. https://doi.org/10.1007/s11130-019-00754-6

    Article  CAS  Google Scholar 

  13. Grossman E (2008) Does increased oxidative stress cause hypertension? Diabetes Care 31(2):S185–189. https://doi.org/10.2337/dc08-s246

    Article  CAS  PubMed  Google Scholar 

  14. Jin LI, Piao ZH, Sun S et al (2017) Gallic acid reduces blood pressure and attenuates oxidative stress and cardiac hypertrophy in spontaneously hypertensive rats. Sci Rep 7(1):15607. https://doi.org/10.1038/s41598-017-15925-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Senoner T, Dichtl W (2019) Oxidative stress in cardiovascular deseases: still a therapeutic target? Nutrients 11(9):2090. https://doi.org/10.3390/nu11092090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pihlanto A, Mäkinen S (2017) The function of renin and the role of food-derived peptides as direct renin inhibitors. In: Tolekova AN (eds) Renin-angiotensin system - past, present and future. In Tech Open, London, UK, pp 241–258. https://doi.org/10.5772/intechopen.69513

  17. Girgih AT, Udenigwe CC, Li H, Adebiyi AP, Aluko RE (2011) Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. J Am Oil Chem Soc 88(11):1767–1774. https://doi.org/10.1007/s11746-011-1841-9

    Article  CAS  Google Scholar 

  18. Kaschina E, Steckelings UM, Unger T (2018) Hypertension and the renin-angiotensin-aldosterone system. Encyclopedia of Endocrine Diseases 3:505–510. https://doi.org/10.1016/B978-0-12-801238-3.03969-6

    Article  Google Scholar 

  19. Hernández-Ledesma B, Del Mar Contreras M, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 165(1):23–35. https://doi.org/10.1016/j.cis.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  20. Daroit DJ, Brandelli A (2021) In vivo bioactivities of food protein-derived peptides –a current review. Curr Opin Food Sci 39:120–129. https://doi.org/10.1016/j.cofs.2021.01.002

    Article  CAS  Google Scholar 

  21. Kaur A, Kehinde BA, Sharma P, Sharma D, Kaur S (2021) Recently isolated food-derived antihypertensive hydrolysates and peptides: a review. Food Chem 346:128719. https://doi.org/10.1016/j.foodchem.2020.128719

    Article  CAS  PubMed  Google Scholar 

  22. Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31(10):1949–1956. https://doi.org/10.1016/j.peptides.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  23. Girgih AT, He R, Malomo S, Offengenden M, Wu J, Aluko RE (2014) Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. J Funct Foods 6:384–394. https://doi.org/10.1016/j.jff.2013.11.005

    Article  CAS  Google Scholar 

  24. Aondona MM, Ikya JK, Ukeyima MT, Gborigo TWJ, Aluko RE, Girgih AT (2021) In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysates and ultrafiltration peptide fractions. J Food Biochem 45(1):e13587. https://doi.org/10.1111/jfbc.13587

    Article  CAS  PubMed  Google Scholar 

  25. Juárez-Chairez MF, Cid-Gallegos MS, Meza-Márquez OG, Jiménez-Martínez C (2020) Biological activities of chickpea in human health (Cicer arietinum L.). A review. Plant Foods Hum Nutr 75:142–153. https://doi.org/10.1007/s11130-020-00814-2

    Article  CAS  Google Scholar 

  26. Sharif HR, Williams PA, Sharif MK et al (2018) Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants – a review. Food Hydrocoll 76:2–16. https://doi.org/10.1016/j.foodhyd.2017.01.002

    Article  CAS  Google Scholar 

  27. Divéky-Ertsey A, Gál I, Madaras K, Pusztai P, Csambalik L (2022) Contribution of pulses to agrobiodiversity in the view of EU protein strategy. Stresses 2(1):90–112. https://doi.org/10.3390/stresses2010008

    Article  Google Scholar 

  28. Klupšaitė D, Juodeikienė G (2015) Legume: composition, protein extraction and functional properties. A review. Chem Technol 66(1):5–12. https://doi.org/10.5755/j01.ct.66.1.12355

    Article  CAS  Google Scholar 

  29. Mani-López E, Palou E, López-Malo A (2021) Legume proteins, peptides, water extracts, and crude protein extracts as antifungals for food applications. Trends Food Sci Technol 112:16–24. https://doi.org/10.1016/j.tifs.2021.03.035

    Article  CAS  Google Scholar 

  30. López-Martínez LX, Leyva-López N, Gutiérrez-Grijalva EP, Heredia JB (2017) Effect of cooking and germination on bioactive compounds in pulses and their health benefits. J Funct Foods 38:624–634. https://doi.org/10.1016/j.jff.2017.03.002

    Article  CAS  Google Scholar 

  31. Hayat I, Ahmad A, Masud T, Ahmed A, Bashir S (2014) Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Crit Rev Food Sci Nutr 54(5):580–592. https://doi.org/10.1080/10408398.2011.596639

    Article  CAS  PubMed  Google Scholar 

  32. Rodríguez-Roque MJ, Sánchez‐Vega R, Pérez‐Leal R et al (2021) By‐products from oilseed processing and their potential applications. In: Lafarga T, Bobo G, Aguil?-Aguayo I (eds) Oil and oilseed processing: Opportunities and challenges. Wiley, Oxford, UK, pp 183–201. https://doi.org/10.1002/9781119575313.ch9

  33. Hernández-Jabalera A, Cortés-Giraldo I, Dávila-Ortíz G et al (2015) Influence of peptides-phenolics interaction on the antioxidant profile of protein hydrolysates from Brassica napus. Food Chem 178:346–357. https://doi.org/10.1016/j.foodchem.2014.12.063

    Article  CAS  PubMed  Google Scholar 

  34. Lin L, Allemekinders H, Dansby A et al (2013) Evidence of health benefits of canola oil. Nutr Rev 71(6):370–385. https://doi.org/10.1111/nure.12033

    Article  PubMed  Google Scholar 

  35. Bandara N, Akbari A, Esparza Y, Wu J (2018) Canola protein: a promising protein source for delivery, adhesive, and material applications. J Am Oil Chem Soc 95(8):1075–1090. https://doi.org/10.1002/aocs.12039

    Article  CAS  Google Scholar 

  36. Tong L-T, Ju Z, Liu L et al (2020) Rice-derived peptide AAGALPS inhibits TNF-α-induced inflammation and oxidative stress in vascular endothelial cells. Food Sci Nutr 8(1):659–667. https://doi.org/10.1002/fsn3.1354

    Article  CAS  PubMed  Google Scholar 

  37. Selamassakul O, Laohakunjit N, Kerdchoechuen O, Yang L, Maier CS (2020) Bioactive peptides from brown rice protein hydrolyzed by bromelain: relationship between biofunctional activities and flavor characteristics. J Food Sci 85(3):707–717. https://doi.org/10.1111/1750-3841.15052

    Article  CAS  PubMed  Google Scholar 

  38. Chai TT, Xiao J, Dass SM et al (2021) Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chem 340:127876. https://doi.org/10.1016/j.foodchem.2020.127876

    Article  CAS  PubMed  Google Scholar 

  39. Tsai BCK, Hsieh DJY, Lin WT et al (2020) Functional potato bioactive peptide intensifies Nrf2-dependent antioxidant defense against renal damage in hypertensive rats. Food Res Int 129:108862. https://doi.org/10.1016/j.foodres.2019.108862

    Article  CAS  PubMed  Google Scholar 

  40. Wang WY, Zhao YQ, Zhao GX, Chi CF, Wang B (2020) Antioxidant peptides from collagen hydrolysate of redlip croaker (Pseudosciaena polyactis) scales: preparation, characterization, and cytoprotective effects on H2O2-damaged HepG2 cells. Mar Drugs 18(3):156. https://doi.org/10.3390/md18030156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang LL, Cai SY, Gao M et al (2020) Purification of antioxidant peptides of Moringa oleifera seeds and their protective effects on H2O2 oxidative damaged chang liver cells. J Funct Foods 64:103698. https://doi.org/10.1016/j.jff.2019.103698

    Article  CAS  Google Scholar 

  42. Sonklin C, Alashi MA, Laohakunjit N, Kerdchoechuen O, Aluko RE (2020) Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. J Funct Foods 64:103635. https://doi.org/10.1016/j.jff.2019.103635

    Article  CAS  Google Scholar 

  43. Yang J, Huang J, Dong X et al (2020) Purification and identification of antioxidant peptides from duck plasma proteins. Food Chem 319:126534. https://doi.org/10.1016/j.foodchem.2020.126534

    Article  CAS  PubMed  Google Scholar 

  44. Tonolo F, Fiorese F, Moretto L et al (2020) Identification of new peptides from fermented milk showing antioxidant properties: mechanism of action. Antioxidants 9(2):117. https://doi.org/10.3390/antiox9020117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ajibola CF, Fashakin JB, Fagbemi TN, Aluko RE (2013) Renin and angiotensin converting enzyme inhibition with antioxidant properties of african yam bean protein hydrolysate and reverse-phase HPLC-separated peptide fractions. Food Res Int 52(2):437–444. https://doi.org/10.1016/j.foodres.2012.12.003

    Article  CAS  Google Scholar 

  46. Girgih AT, Alashi A, He R, Malomo S, Aluko RE (2013) Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats. Eur J Nutr 53(5):1237–1246. https://doi.org/10.1007/s00394-013-0625-4

    Article  CAS  PubMed  Google Scholar 

  47. He R, Malomo SA, Girgih AT, Ju X, Aluko RE (2013) Glycinyl-histidinyl-serine (GHS), a novel rapeseed protein-derived peptide has blood pressure-lowering effect in spontaneously hypertensive rats. J Agric Food Chem 61(35):8396–8402. https://doi.org/10.1021/jf400865m

    Article  CAS  PubMed  Google Scholar 

  48. Girgih AT, Nwachukwu ID, Onuh JO, Malomo SA, Aluko RE (2016a) Antihypertensive properties of a pea protein hydrolysate during short- and long-term oral administration to spontaneously hypertensive rats. J Food Sci 81(5):H1281–H1287. https://doi.org/10.1111/1750-3841.13272

    Article  CAS  PubMed  Google Scholar 

  49. Udenigwe CC, Adebiyi AP, Doyen A, Li H, Bazinet L, Aluko RE (2012) Low molecular weight flaxseed protein-derived arginine-containing peptides reduced blood pressure of spontaneously hypertensive rats faster than amino acid form of arginine and native flaxseed protein. Food Chem 132(1):468–475. https://doi.org/10.1016/j.foodchem.2011.11.024

    Article  CAS  PubMed  Google Scholar 

  50. Ciau-Solís NA, Acevedo-Fernández JJ, Betancur-Ancona D (2018) In vitro renin–angiotensin system inhibition and in vivo antihypertensive activity of peptide fractions from lima bean (Phaseolus lunatus L). J Sci Food Agric 98(2):781–786. https://doi.org/10.1002/jsfa.8543

    Article  CAS  PubMed  Google Scholar 

  51. Onuh JO, Girgih AT, Aluko RE, Aliani M (2013) Inhibitions of renin and angiotensin converting enzyme activities by enzymatic chicken skin protein hydrolysates. Food Res Int 53(1):260–267. https://doi.org/10.1016/j.foodres.2013.05.010

    Article  CAS  Google Scholar 

  52. Girgih AT, Nwachukwu ID, Hasan F, Fagbemi TN, Gill T, Aluko RE (2015) Kinetics of the inhibition of renin and angiotensin I-converting enzyme by cod (Gadus morhua) protein hydrolysates and their antihypertensive effects in spontaneously hypertensive rats. Food Nutr Res 59(1):29788. https://doi.org/10.3402/fnr.v59.29788

    Article  CAS  PubMed  Google Scholar 

  53. Fu Y, Young JF, Therkildsen M (2017) Bioactive peptides in beef: endogenous generation through postmortem aging. Meat Sci 123:134–142. https://doi.org/10.1016/j.meatsci.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  54. Onuh JO, Girgih AT, Malomo SA, Aluko RE, Aliani M (2015) Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats. J Funct Foods 14:133–143. https://doi.org/10.1016/j.jff.2015.01.031

    Article  CAS  Google Scholar 

  55. Yu Z, Yin Y, Zhao W, Chen F, Liu J (2014) Antihypertensive effect of angiotensin-converting enzyme inhibitory peptide RVPSL on spontaneously hypertensive rats by regulating gene expression of the renin – angiotensin system. J Agric Food Chem 62(4):912–917. https://doi.org/10.1021/jf405189y

    Article  CAS  PubMed  Google Scholar 

  56. Girgih AT, Nwachukwu ID, Hasan FM et al (2016b) Kinetics of in vitro enzyme inhibition and blood pressure-lowering effects of salmon (Salmo salar) protein hydrolysates in spontaneously hypertensive rats. J Funct Foods 20:43–53. https://doi.org/10.1016/j.jff.2015.10.018

    Article  CAS  Google Scholar 

  57. Ijarotimi OS, Malomo SA, Alashi AM et al (2018) Antioxidant and antihypertensive activities of wonderful cola (Buchholzia coriacea) seed protein and enzymatic protein hydrolysates. J Food Bioact 3:133–143. https://doi.org/10.31665/JFB.2018.3156

    Article  Google Scholar 

  58. Aderinola TA, Fagbemi TN, Enujiugha VN, Alashi AM, Aluko RE (2019) In vitro antihypertensive and antioxidative properties of trypsin-derived Moringa oleifera seed globulin hydrolyzate and its membrane fractions. Food Sci Nutr 7(1):132–138. https://doi.org/10.1002/fsn3.826

    Article  CAS  PubMed  Google Scholar 

  59. Zou Z, Wang M, Wang Z, Aluko RE, He R (2020) Antihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates. J Food Biochem 44(1):e13090. https://doi.org/10.1111/jfbc.13090

    Article  PubMed  Google Scholar 

  60. Tomé D (2021) Protein quality and sources. Reference module in food science. In: Caballero B (ed) Encyclopedia of human nutrition. Elsevier Ltd., Amsterdam, Netherlands, pp 123–130. https://doi.org/10.1016/B978-0-12-821848-8.00028-7

  61. Sun Y, Pan D, Guo Y, Li J (2012) Purification of chicken breast protein hydrolysate and analysis of its antioxidant activity. Food Chem Toxicol 50(10):3397–3404. https://doi.org/10.1016/j.fct.2012.07.047

    Article  CAS  PubMed  Google Scholar 

  62. Benedé S, Molina E (2020) Chicken egg proteins and derived peptides with antioxidant properties. Foods 9(6):735. https://doi.org/10.3390/foods9060735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dale HF, Madsen L, Lied GA (2019) Fish–derived proteins and their potential to improve human health. Nutr Rev 77(8):572–583. https://doi.org/10.1093/nutrit/nuz016

    Article  Google Scholar 

  64. Singh BP, Vij S, Hati S (2014) Functional significance of bioactive peptides derived from soybean. Peptides 54:171–179. https://doi.org/10.1016/j.peptides.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  65. Madhu M, Kumar D, Sirohi R et al (2022) Bioactive peptides from meat: current status on production, biological activity, safety, and regulatory framework. Chemosphere 307:135650. https://doi.org/10.1016/j.chemosphere.2022.135650

    Article  CAS  PubMed  Google Scholar 

  66. Sonklin C, Alashi AM, Laohakunjit N, Aluko RE (2021) Functional characterization of mung bean meal protein-derived antioxidant peptides. Molecules 26(6):1515. https://doi.org/10.3390/molecules26061515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang F, Weng Z, Lyu Y et al (2020) Wheat germ-derived peptide ADWGGPLPH abolishes high glucose-induced oxidative stress via modulation of the PKCζ/AMPK/NOX4 pathway. Food Funct 11(8):6843–6854. https://doi.org/10.1039/D0FO01229G

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Wu T, Fang L et al (2020) Peptides from walnut (Juglans mandshurica Maxim.) Protect hepatic HepG2 cells from high glucose-induced insulin resistance and oxidative stress. Food Funct 11(9):8112–8121. https://doi.org/10.1039/D0FO01753A

    Article  CAS  PubMed  Google Scholar 

  69. Yu X, Chen Y, Qi Z, Chen Q, Cao Y, Kong Q (2023) Preparation and identification of a novel peptide with high antioxidant activity from corn gluten meal. Food Chem 424:136389. https://doi.org/10.1016/j.foodchem.2023.136389

    Article  CAS  PubMed  Google Scholar 

  70. Sierra L, Fan H, Zapata J, Wu J (2021) Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. LWT - Food Sci Technol 146:111631. https://doi.org/10.1016/j.lwt.2021.111631

    Article  CAS  Google Scholar 

  71. Wang J, Yang G, Li H, Zhang T et al (2023) Preparation and identification of novel antioxidant peptides from camel bone protein. Food Chem 424:136253. https://doi.org/10.1016/j.foodchem.2023.136253

    Article  CAS  PubMed  Google Scholar 

  72. Gong K, Deng L, Shi A et al (2017) High-pressure microfluidisation pretreatment disaggregate peanut protein isolates to prepare antihypertensive peptide fractions. Int J Food Sci Technol 52(8):1760–1769. https://doi.org/10.1111/ijfs.13449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional (ENCB-IPN) for the support and the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the grant provided.

Funding

This study was funded by Secretaria de Investigacion y Posgrado (Project SIP20230172), of the Instituto Politecnico Nacional. México.

Author information

Authors and Affiliations

Authors

Contributions

Deyanira del Rosario Moguel-Concha: Conceptualization, Writing – Original Draft, Editing. José Eduardo Borges-Martínez: Writing – Original Draft, Review. María Stephanie Cid-Gallegos: Conceptualization, Writing – Original Draft. Milagros Faridy Juárez-Chairez: Review and Editing. Ana Luisa Gómez-Gómez: Editing. Darío Iker Tellez-Medina: Supervision, Review and Editing. Cristian Jiménez-Martínez: Supervision, Review and Editing.

Corresponding author

Correspondence to Cristian Jiménez-Martínez.

Ethics declarations

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflicts of Interest/Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moguel-Concha, D.d., Borges-Martínez, J.E., Cid-Gallegos, M.S. et al. Antioxidant and Renin Inhibitory Activities of Peptides from Food Proteins on Hypertension: A Review. Plant Foods Hum Nutr 78, 493–505 (2023). https://doi.org/10.1007/s11130-023-01085-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-023-01085-3

Keywords

Navigation