Skip to main content
Log in

Broken Rice as a Potential Functional Ingredient with Inhibitory Activity of Renin and Angiotensin-Converting Enzyme(ACE)

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the ability of broken rice, an underutilized industrial by-product, as a potential functional and health promoting ingredient. With this purpose, the ability to inhibit the angiotensin converting enzyme and renin of a rice protein hydrolyzate (RPH) obtained from a high-protein variety of broken rice (var. Nutriar FCAyF) was analyzed (IC50 = 0.87 and 2.7 mg/mL, respectively). RPH was separated by gel permeation chromatography and in a second purification step by RP-HPLC. The sequence of antihypertensive peptides presented in two RP-HPLC fractions was analyzed. Peptides capable of interacting with the active sites of both enzymes were identified. In this study, we demonstrate that the hydrolysis treatment improves functional and biological properties of rice proteins. Protein preparations obtained from a by-product of rice industry, such as broken rice, are a promising ingredient with potentially good biological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. States U (2017) Statistics of grain and feed. Agric Stat:1–49. https://www.nass.usda.gov/Publications/Ag_Statistics/2017/Chapter01.pdf

  2. Moreno P (2016) Cadena del arroz. Minist Agroind Argentina 15. http://www.alimentosargentinos.gob.ar/HomeAlimentos/Cadenas%20de%20Valor%20de%20Alimentos%20y%20Bebidas/informes/Ficha_anual_arroz_sept_2017.pdf

  3. Food and Agriculture Organization (2018) FAO rice market monitor. http://www.fao.org/3/I9243EN/i9243en.pdf

  4. Pinciroli M, Vidal AA, Añón MC, Martínez EN (2009) Comparison between protein functional properties of two rice cultivars. LWT - Food Sci Technol 42:1605–1610. https://doi.org/10.1016/j.lwt.2009.06.003

    Article  CAS  Google Scholar 

  5. Paraman I, Hettiarachchy NS, Schaefer C, Beck MI (2006) Physicochemical properties of rice endosperm proteins extracted by chemical and enzymatic methods. Cereal Chem 83:663–667. https://doi.org/10.1094/CC-83-0663

    Article  CAS  Google Scholar 

  6. Phongthai S, D’Amico S, Schoenlechner R et al (2018) Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem 240:156–164. https://doi.org/10.1016/j.foodchem.2017.07.080

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Q, Xiong H, Selomulya C, Chen XD, Zhong H, Wang S, Sun W, Zhou Q (2012) Enzymatic hydrolysis of rice dreg protein: effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chem 134:1360–1367. https://doi.org/10.1016/j.foodchem.2012.03.033

    Article  CAS  PubMed  Google Scholar 

  8. Kannan A, Hettiarachchy NSNS, Lay JOJO, Liyanage R (2010) Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 31:1629–1634. https://doi.org/10.1016/j.peptides.2010.05.018

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Yokoyama WHWH, Zhang H (2012) Concentration-dependent displacement of cholesterol in micelles by hydrophobic rice bran protein hydrolysates. J Sci Food Agric 92:1395–1401. https://doi.org/10.1002/jsfa.4713

    Article  CAS  PubMed  Google Scholar 

  10. Shobako N, Ogawa Y, Ishikado A, Harada K, Kobayashi E, Suido H, Kusakari T, Maeda M, Suwa M, Matsumoto M, Kanamoto R, Ohinata K (2018) A novel antihypertensive peptide identified in thermolysin-digested rice bran. Mol Nutr Food Res 62:1–7. https://doi.org/10.1002/mnfr.201700732

    Article  CAS  Google Scholar 

  11. Taniguchi M, Kameda M, Namae T, Ochiai A, Saitoh E, Tanaka T (2017) Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. J Funct Foods 34:287–296. https://doi.org/10.1016/j.jff.2017.04.046

    Article  CAS  Google Scholar 

  12. Agyei D, Bambarandage E, Udenigwe CC (2018) The role of bioinformatics in the discovery of bioactive peptides. In: Reference module in food science. Elsevier, Amsterdam, pp 1–9

    Google Scholar 

  13. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided-Drug Des 7:146–157. https://doi.org/10.2174/157340911795677602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Juliano BO (1985) Polysacharides, proteins and lipids of rice. In: Rice: chemistry and technology, 2nd edn. American Association of Cereal Chemists, St Paul, pp 59–174

    Google Scholar 

  15. Dinnella C, Gargaro MT, Rossano R, Monteleone E (2002) Spectrophotometric assay using o-phtaldialdehyde for the determination of transglutaminase activity on casein. Food Chem 78:363–368. https://doi.org/10.1016/S0308-8146(02)00109-7

    Article  CAS  Google Scholar 

  16. Quiroga AV, Aphalo P, Nardo AE, Añón MC (2017) In vitro modulation of renin-angiotensin system enzymes by amaranth (Amaranthus hypochondriacus) protein-derived peptides: alternative mechanisms different from ACE inhibition. J Agric Food Chem 65:7415–7423. https://doi.org/10.1021/acs.jafc.7b02240

    Article  CAS  PubMed  Google Scholar 

  17. Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  CAS  PubMed  Google Scholar 

  18. Hurst PL, Lovell-Smith CJ (1981) Optimized assay for serum angiotensin-converting enzyme activity. Clin Chem 27:2048–2052

    CAS  PubMed  Google Scholar 

  19. Ferri M, Graen-Heedfeld J, Bretz K, Guillon F, Michelini E, Calabretta MM, Lamborghini M, Gruarin N, Roda A, Kraft A, Tassoni A (2017) Peptide fractions obtained from rice by-products by means of an environment-friendly process show in vitro health-related bioactivities. PLoS One 12:e0170954. https://doi.org/10.1371/journal.pone.0170954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adebiyi AP, Adebiyi AO, Ogawa T, Muramoto K (2008) Purification and characterisation of antioxidative peptides from unfractionated rice bran protein hydrolysates. Int J Food Sci Technol 43:35–43. https://doi.org/10.1111/j.1365-2621.2006.01379.x

    Article  CAS  Google Scholar 

  21. Condés MC, Scilingo AA, Añón MC (2009) Characterization of amaranth proteins modified by trypsin proteolysis. Structural and functional changes. LWT - Food Sci Technol 42:963–970. https://doi.org/10.1016/j.lwt.2008.12.008

    Article  CAS  Google Scholar 

  22. Ajibola CF, Fashakin JB, Fagbemi TN, Aluko RE (2013) Renin and angiotensin converting enzyme inhibition with antioxidant properties of African yam bean protein hydrolysate and reverse-phase HPLC-separated peptide fractions. Food Res Int 52:437–444. https://doi.org/10.1016/j.foodres.2012.12.003

    Article  CAS  Google Scholar 

  23. Amagliani L, O’Regan J, Kelly AL, O’Mahony JA (2017) The composition, extraction, functionality and applications of rice proteins: a review. Trends Food Sci Technol 64:1–12. https://doi.org/10.1016/j.tifs.2017.01.008

    Article  CAS  Google Scholar 

  24. Fabian C, Ju YH (2011) A review on rice bran protein: its properties and extraction methods. Crit Rev Food Sci Nutr 51:816–827. https://doi.org/10.1080/10408398.2010.482678

    Article  CAS  PubMed  Google Scholar 

  25. Aluko RE (2019) Food protein-derived renin-inhibitory peptides: in vitro and in vivo properties. J Food Biochem 43:1–12. https://doi.org/10.1111/jfbc.12648

    Article  CAS  Google Scholar 

  26. Aluko RE (2015) Antihypertensive peptides from food proteins. Annu Rev Food Sci Technol 6:235–262. https://doi.org/10.1146/annurev-food-022814-015520

    Article  CAS  PubMed  Google Scholar 

  27. Aluko RE (2015) Structure and function of plant protein-derived antihypertensive peptides. Curr Opin Food Sci 4:44–50

    Article  Google Scholar 

  28. Takahashi S, Tokiwano T, Hata K et al (2010) The occurrence of renin inhibitor in rice: isolation, identification, and structure-function relationship. Biosci Biotechnol Biochem 74:1713–1715. https://doi.org/10.1271/bbb.100233

    Article  CAS  PubMed  Google Scholar 

  29. Alashi AM, Blanchard CL, Mailer RJ, Agboola SO, Mawson AJ, He R, Malomo SA, Girgih AT, Aluko RE (2014) Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Res Int 55:281–287. https://doi.org/10.1016/j.foodres.2013.11.015

    Article  CAS  Google Scholar 

  30. Udenigwe CC, Li H, Aluko RE (2012) Quantitative structure-activity relationship modeling of renin-inhibiting dipeptides. Amino Acids 42:1379–1386. https://doi.org/10.1007/s00726-011-0833-2

    Article  CAS  PubMed  Google Scholar 

  31. Berek D (2010) Size exclusion chromatography – a blessing and a curse of science and technology of synthetic polymers. J Sep Sci 33:315–335. https://doi.org/10.1002/jssc.200900709

    Article  CAS  PubMed  Google Scholar 

  32. Saito Y, Ohura S, Kawato A, Suginami K (1997) Prolyl endopeptidase inhibitors in sake and its byproducts. J Agric Food Chem 45:720–724. https://doi.org/10.1021/jf9604706

    Article  CAS  Google Scholar 

  33. Masuyer G, Schwager SLU, Sturrock ED, Isaac RE, Acharya KR (2012) Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci Rep 2:1–10. https://doi.org/10.1038/srep00717

    Article  CAS  Google Scholar 

  34. Natesh R, Schwager SLU, Sturrock ED, Acharya KR (2003) Crystal structure of the human enzyme – lisinopril complex. Nature 421:1427–1429. https://doi.org/10.1038/nature01370

    Article  CAS  Google Scholar 

  35. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contribution of Dra. Nora E. Martínez to this work.

Funding

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina), Project PICT-2012- 0937.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra V. Quiroga.

Ethics declarations

Conflict of Interest

The author declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinciroli, M., Aphalo, P., Nardo, A.E. et al. Broken Rice as a Potential Functional Ingredient with Inhibitory Activity of Renin and Angiotensin-Converting Enzyme(ACE). Plant Foods Hum Nutr 74, 405–413 (2019). https://doi.org/10.1007/s11130-019-00754-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-019-00754-6

Keywords

Navigation