Skip to main content
Log in

Health Promoting vs Anti-nutritive Aspects of Kohlrabi Sprouts, a Promising Candidate for Novel Functional Food

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Kohlrabi sprouts are just gaining popularity as the new example of functional food. The study was focused on the influence of germination time and light conditions on glucosinolates, phenolic acids, flavonoids, and fatty acids content in kohlrabi sprouts, in comparison to the bulbs. The effect of kohlrabi products on SW480, HepG2 and BJ cells was also determined. The length of sprouting time and light availability significantly influenced the concentrations of the phenolic compounds. Significant differences in progoitrin concentrations were observed between the sprouts harvested in light and in the darkness, with significantly lower content for darkness conditions. Erucic acid was the dominant fatty acid found in sprouts (14.5–34.5%). Sprouts and bulbs were less toxic to normal than to cancer cells. The sprouts stimulated necrosis (56.4%) more than apoptosis (34.1%) in SW480 cells, while the latter effect was predominant for the bulbs. Both sprouts and bulbs caused rather necrosis (45.5 and 63.9%) than apoptosis (32 and 32.5%) in HepG2 cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung HA, Karki S, Ehom NY, Yoon MH, Kim EJ, Choi JS (2014) Anti-diabetic and anti-inflammatory effects of green and red kohlrabi cultivars (Brassica oleracea var. gongylodes). Prev Nutr Food Sci 19(4):281–290. https://doi.org/10.3746/pnf.2014.19.4.281

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee JW, Lee DY, Cho JG, Baek NI, Lee YH (2010) Isolation and identification of sterol compounds from the red kohlrabi (Brassica oleracea var. gongylodes) sprouts. J Appl Biol Chem 53(4):207–211. https://doi.org/10.3839/jabc.2010.037

    Article  CAS  Google Scholar 

  3. Lee JW, Lee DY, Baek DR, Jeong RH, Lee DS, Kim YC, Baek NI, Lee Y (2014) Phenylpropanoids from red kohlrabi sprouts inhibits nitric oxide production in RAW 264.7 macrophage cells. Food Sci Biotechnol 23(3):965–969. https://doi.org/10.1007/s10068-014-0130-4

    Article  CAS  Google Scholar 

  4. Park CH, Yeo HJ, Kim NS, Eun PY, Kim SJ, Arasu MV, Al-Dhabi NA, Park S-Y, Kim JK, Park SU (2017) Metabolic profiling of pale green and purple kohlrabi (Brassica oleracea var. gongylodes). Appl Biol Chem 60(3):249–257. https://doi.org/10.1007/s13765-018-0367-3

    Article  CAS  Google Scholar 

  5. Pasko P, Sulkowska–Ziaja K, Muszynska B, Zagrodzki P (2014) Serotonin, melatonin, and certain indole derivatives profiles in rutabaga and kohlrabi seeds, sprouts, bulbs, and roots. LWT-Food Sci Technol 59(2):740–745. https://doi.org/10.1016/j.lwt.2014.07.024

    Article  CAS  Google Scholar 

  6. Zagrodzki P, Paśko P, Galanty A, Tyszka-Czochara M, Wietecha-Posłuszny R, Rubió PS, Bartoń H, Prochownik E, Muszyńska B, Sułkowska-Ziaja K, Bierła K, Łobiński R, Szpunar J, Gorinstein S (2020) Does selenium fortification of kale and kohlrabi sprouts change significantly their biochemical and cytotoxic properties? J Trace Elem Med Biol 59:126466. https://doi.org/10.1016/j.jtemb.2020.126466

    Article  CAS  PubMed  Google Scholar 

  7. Steevens J, Schouten LJ, Goldbohm RA, van den Brandt PA (2011) Vegetables and fruits consumption and risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. Int J Cancer 129(11):2681–2693. https://doi.org/10.1002/ijc.25928

    Article  CAS  PubMed  Google Scholar 

  8. Wu QJ, Yang Y, Vogtmann E, Wang J, Han LH, Li HL, Xiang YB (2014) Cruciferous vegetables intake and the risk of colorectal cancer: a meta-analysis of observational studies. Ann Oncol 24(4):1079–1087. https://doi.org/10.1093/annonc/mds601

    Article  Google Scholar 

  9. Gnocchi D, Cesari G, Calabrese GJ, Capone R, Sabbà C, Mazzocca A (2020) Inhibition of hepatocellular carcinoma growth by ethyl acetate extracts of apulian Brassica oleracea L. and Crithmum maritimum L. Plant Foods Hum Nutr 75(1):33–40. https://doi.org/10.1007/s11130-019-00781-3

    Article  CAS  PubMed  Google Scholar 

  10. Paśko P, Krośniak M, Prochownik E, Tyszka-Czochara M, Fołta M, Francik R, Sikora J, Malinowski M, Zagrodzki P (2018) Effect of broccoli sprouts on thyroid function, haematological, biochemical, and immunological parameters in rats with thyroid imbalance. Biomed Pharmacother 97:82–90. https://doi.org/10.1016/j.biopha.2017.10.098

    Article  CAS  PubMed  Google Scholar 

  11. Paśko P, Okoń K, Krośniak M, Prochownik E, Żmudzki P, Kryczyk – Kozioł J, Zagrodzki P (2018) Interaction between iodine and glucosinolates in rutabaga sprouts and selected biomarkers of thyroid function in male rats. J Trace Elem Med Biol 46:110–116. https://doi.org/10.1016/j.jtemb.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  12. López-Chillón MT, Carazo-Díaz C, Prieto-Merino D, Zafrilla P, Moreno DA, Villaño D (2019) Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin Nutr 38(2):745–752. https://doi.org/10.1016/j.clnu.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  13. Kraus A (2015) Development of functional food with the participation of the consumer. Motivators for consumption of functional products. Int J Consum Stud 39(1):2–11. https://doi.org/10.1111/ijcs.12144

    Article  Google Scholar 

  14. Paśko P, Galanty A, Żmudzki P, Gdula-Argasińska J, Zagrodzki P (2019) Influence of different light conditions and time of sprouting on harmful and beneficial aspects of rutabaga sprouts in comparison to their roots and seeds. J Sci Food Agric 99(1):302–308. https://doi.org/10.1002/jsfa.9188

    Article  CAS  PubMed  Google Scholar 

  15. Paśko P, Tyszka-Czochara M, Trojan S, Bobis-Wozowicz S, Zagrodzki P, Namieśnik J, Haruenkit R, Poovarodom S, Pinsirodom P, Gorinstein S (2019) Glycolytic genes expression, proapoptotic potential in relation to the total content of bioactive compounds in durian fruits. Food Res Int 125:108563. https://doi.org/10.1016/j.foodres.2019.108563

    Article  CAS  PubMed  Google Scholar 

  16. Vale AP, Cidade H, Pinto M, Oliveira MBP (2014) Effect of sprouting and light cycle on antioxidant activity of Brassica oleracea varieties. Food Chem 165:379–387. https://doi.org/10.1016/j.foodchem.2014.05.122

    Article  CAS  PubMed  Google Scholar 

  17. Lugast A, Hovari J (2000) Flavonoid aglycons in foods of plant origin I vegetables. Acta Aliment 29(4):345–352. https://doi.org/10.1556/AAlim.29.2000.4.4

    Article  Google Scholar 

  18. Park WT, Kim JK, Park S, Lee SW, Li X, Kim YB, Park SU (2012) Metabolic profiling of glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in kohlrabi (Brassica oleracea var. gongylodes). J Agric Food Chem 60(33):8111–8116. https://doi.org/10.1021/jf301667j

  19. Sassi AB, M’hamed AC, Chahdoura H, Tounsi MS, Mastouri M, Salem HB (2020) Variation in biochemical profile and health beneficial compounds and biological activities of Brassica oleracea var. gongylodes L. morphological parts. J Food Meas Charact 14:1192–1200. https://doi.org/10.1007/s11694-019-00368-1

  20. Harbaum B, Hubbermann EM, Wolff C, Herges R, Zhu Z, Schwarz K (2007) Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. Ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD. J Agric Food Chem 55:8221–8826. https://doi.org/10.1021/jf071314%2B

  21. Lund E (2003) Non-nutritive bioactive constituents of plants: dietary sources and health benefits of glucosinolates. Int J Vitam Nutr Res 73(2):135–143. https://doi.org/10.1024/0300-9831.73.2.135

    Article  CAS  PubMed  Google Scholar 

  22. Paśko P, Tyszka-Czochara M, Galanty A, Gdula-Argasińska J, Żmudzki P, Bartoń H, Zagrodzki P, Gorinstein S (2018) Comparative study of predominant phytochemical compounds and proapoptotic potential of broccoli sprouts and florets. Plant Foods Hum Nutr 73:95–100. https://doi.org/10.1007/s11130-018-0665-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. West LG, Meyer KA, Balch BA, Rossi FJ, Schultz MR, Haas GW (2004) Glucoraphanin and 4-hydroxyglucobrassicin contentsin seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. J Agric Food Chem 52(4):916–926. https://doi.org/10.1021/jf0307189

    Article  CAS  PubMed  Google Scholar 

  24. Vale AP, Santos J, Brito NV, Fernandes D, Rosa E, Oliveira MBP (2015) Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts. Phytochemistry 115:252–260. https://doi.org/10.1016/j.phytochem.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  25. Choi SH, Ryu DK, Park SH, Ahn KG, Lim YP, An GH (2010) Composition analysis between kohlrabi (Brassica oleracea var. gongylodes) and radish (Raphanus sativus). Kor J Hort Sci Technol 28(3):469–475

    CAS  Google Scholar 

  26. Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48(7):2862–2867. https://doi.org/10.1021/jf981373a

    Article  CAS  PubMed  Google Scholar 

  27. Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, Schrijver R, Hansen M, Gerhauser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(S2):S219–S219. https://doi.org/10.1002/mnfr.200800065

    Article  PubMed  Google Scholar 

  28. Wendlinger C, Hammann S, Vetter W (2014) Various concentrations of erucic acid in mustard oil and mustard. Food Chem 153:393–397. https://doi.org/10.1016/j.foodchem.2013.12.073

    Article  CAS  PubMed  Google Scholar 

  29. Baenas N, Moreno DA, García-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. J Agric Food Chem 60(45):11409–11420. https://doi.org/10.1021/jf302863c

    Article  CAS  PubMed  Google Scholar 

  30. Altinoz MA. Bilir A, Elmaci İ (2018) Erucic acid, a component of Lorenzo’s oil and PPAR-δ ligand modifies C6 glioma growth and toxicity of doxorubicin. Experimental data and a comprehensive literature analysis. Chem Biol Interact 294:107–117. https://doi.org/10.1016/j.cbi.2018.08.024

  31. Yang MJ, Cha SS, Lee JJ (2015) Effects of purple kohlrabi (Brassica oleracea var. gongylodes) flesh and peel ethanol extracts on the antioxidant activity and antiproliferation of human cancer cells. Korean J Community Living Sci 26(2):405–414. https://doi.org/10.7856/kjcls.2015.26.2.405

    Article  Google Scholar 

  32. Rizk S, Zarzour V (2013) A comparative study of the antiproliferative effect of kohlrabi and green cabbage on colorectal cancer cell lines in vitro. FASEB J 27:S1. https://doi.org/10.1096/fasebj.27.1_supplement.639.13

  33. Jamuna KS, Suma MS, Ramesh CK, Mahmood R, Nanjundaswamy L (2017) Studies on in vitro antiproliferative activities in cruciferous vegetables. J Appl Hortic 19(3):230–234

Download references

Funding

This study was supported by the following grants from the Polish Ministry of Science and Higher Education: N42/DBS/000111 and N42/DBS/000167. The Uniflora Company (Częstochowa, Poland) supports the idea of investigation of kohlrabi sprouts in in vitro models.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paweł Paśko or Shela Gorinstein.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest regarding the content of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The sprouts harvested in light and dark differed in progoitrin content.

• Erucic acid was dominant unsaturated fatty acid in all evaluated kohlrabi parts.

• Kohlrabi sprouts and bulbs were less toxic to normal than to cancer cell.

• Sprouts stimulated necrosis more than apoptosis in SW480 cells.

Supplementary Information

ESM 1

(DOCX 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paśko, P., Galanty, A., Tyszka-Czochara, M. et al. Health Promoting vs Anti-nutritive Aspects of Kohlrabi Sprouts, a Promising Candidate for Novel Functional Food. Plant Foods Hum Nutr 76, 76–82 (2021). https://doi.org/10.1007/s11130-020-00877-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00877-1

Keywords

Navigation