Plant Foods for Human Nutrition

, Volume 66, Issue 3, pp 231–237 | Cite as

Chemical Composition and Nutritional Value of Unripe Banana Flour (Musa acuminata, var. Nanicão)

  • Elizabete Wenzel MenezesEmail author
  • Carmen Cecília Tadini
  • Tatiana Beatris Tribess
  • Angela Zuleta
  • Julieta Binaghi
  • Nelly Pak
  • Gloria Vera
  • Milana Cara Tanasov Dan
  • Andréa C. Bertolini
  • Beatriz Rosana Cordenunsi
  • Franco M. Lajolo


Banana flour obtained from unripe banana (Musa acuminata, var. Nanicão) under specific drying conditions was evaluated regarding its chemical composition and nutritional value. Results are expressed in dry weight (dw). The unripe banana flour (UBF) presented a high amount of total dietary fiber (DF) (56.24 g/100 g), which consisted of resistant starch (RS) (48.99 g/100 g), fructans (0.05 g/100 g) and DF without RS or fructans (7.2 g/100 g). The contents of available starch (AS) (27.78 g/100 g) and soluble sugars (1.81 g/100 g) were low. The main phytosterols found were campesterol (4.1 mg/100 g), stigmasterol (2.5 mg/100 g) and β-sitosterol (6.2 mg/100 g). The total polyphenol content was 50.65 mg GAE/100 g. Antioxidant activity, by the FRAP and ORAC methods, was moderated, being 358.67 and 261.00 μmol of Trolox equivalent/100 g, respectively. The content of Zn, Ca and Fe and mineral dialyzability were low. The procedure used to obtain UBF resulted in the recovery of undamaged starch granules and in a low-energy product (597 kJ/100 g).


Antioxidant activity Dietary fiber Resistant starch Starch microscopy Unripe banana flour 



2, 2′-azobis (2-amidinopropane)


Available starch


Dietary fiber


Ferric reducing antioxidant power


Glucose-oxidase-peroxidase/2,2′-Azino-di-[3-ethylbenzthiazoline] sulfonate


Oxygen radical absorbance capacity


Resistant starch


Total starch


Unripe banana flour



The authors acknowledge the 106PI0297 CYTED/CNPq project for international cooperation that allowed the scientific interchange between different Ibero-American laboratories as well as CNPq for the scholarships granted to authors Tatiana Beatris Tribess and Milana C. T. Dan.


  1. 1.
    Food and Agriculture Organization of the United Nations (FAO) (2007) FAOSTAT—ProdStat, Retrieved 2009–3 from
  2. 2.
    Food and Agriculture Organization of the United Nations (FAO) (2007b) FAOSTAT—TradeStat, Retrieved 2009–3 from
  3. 3.
    Zhang P, Whistler R, Bemiller J, Hamaker B (2005) Banana starch: Production, physicochemical properties and digestibility—a review. Carbohydr Polym 59:443–458CrossRefGoogle Scholar
  4. 4.
    Cordenunsi BR, Lajolo FM (1995) Starch breakdown during banana ripening—Sucrose synthase and sucrose-phosphate synthase. J Agric Food Chem 43:347–351CrossRefGoogle Scholar
  5. 5.
    Juarez-Garcia E, Agama-Acevedo E, Sáyago-Ayerdi ESG, Rodriguez-Ambriz SL, Bello-Perez LA (2006) Composition, digestibility and application in breadmaking of banana flour. Plant Foods Hum Nutr 61(3):131–137CrossRefGoogle Scholar
  6. 6.
    Saura-Calixto F (2006) Evolución del concepto de fibra. In: Lajolo FM, Menezes EW (eds), Carbohidratos en alimentos regionales iberoamericanos. Proyecto CYTED/CNPq XI.18. Composición, Estructura, Propiedades Biológicas de Carbohidratos y su Utilización en Alimentos. EDUSP, São Paulo, pp 235–253Google Scholar
  7. 7.
    Goñi I, Díaz-Rubio MH, Pérez-Jiménez J, Saura-Calixto F (2009) Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Res Int 42(7):840–846CrossRefGoogle Scholar
  8. 8.
    Oliveira L, Freire CSR, Silvestre AJD, Cordeiro N (2008) Lipophilic extracts from banana fruit residues: A source of valuable phytosterols. J Agr Food Chem 56:9520–9524CrossRefGoogle Scholar
  9. 9.
    Hardisson A, Rubio C, Baez A, Martin M, Alvarez R, Diaz E (2001) Mineral composition of the banana (Musa acuminata) from the island of Tenerife. Food Chem 73(2):153–161CrossRefGoogle Scholar
  10. 10.
    Tribess TB, Hernandez-Uribe JP, Mendez-Montealvo MGC, Menezes EW, Bello-Perez LA, Tadini CC (2009) Thermal properties and resistant starch content of unripe banana flour (Musa cavendishii) produced at different drying conditions. LWT-Food Sci Technol 42:1022–1025CrossRefGoogle Scholar
  11. 11.
    Horwitz W, Latimer GW Jr (2006) Official Methods of Analysis edn. Maryland: AOAC InternationalGoogle Scholar
  12. 12.
    McCleary BV, Monaghan DA (2002) Measurement of resistant starch. J AOAC Int 85(3):665–675Google Scholar
  13. 13.
    McCleary BV, McNally M, Rossiter P (2002) Measurement of resistant starch by enzymatic digestion in starch selected plant materials: Collaborative study. J AOAC Int 85(5):1103–1111Google Scholar
  14. 14.
    McCleary BV, Murphy A, Mugford DC (2000) Measurement of total fructans in food by enzymic/spectrophotometric method; collaborative study. J AOAC Int 83(2):356–364Google Scholar
  15. 15.
    Lee SC, Prosky L, Devries JW (1992) Determination of total, soluble and insoluble dietary fiber in foods. Enzymatic-gravimetric method, Mes-TRIS Buffer: Collaborative study. J AOAC Int 75:395–416Google Scholar
  16. 16.
    McCleary BV, Rossiter P (2004) Measurement of novel dietary fibres. J AOAC Int 87(3):707–717Google Scholar
  17. 17.
    Drago S, Binaghi MJ, Valencia M (2005) Effect of gastric digestion on iron, zinc and calcium availbility from preterm and term starting infant formulas. J Food Sci 70(2):107–112CrossRefGoogle Scholar
  18. 18.
    Miller DD, Schricker BR, Rasmussen RR, Van Campen D (1981) An in vitro method for estimation of iron availability from meals. Am J Clin Nutr 34:2248–2256Google Scholar
  19. 19.
    Wolfgor R, Drago SR, Rodríguez V, Pellegrino N, Valencia M (2002) In vitro measurement of available iron in fortified foods. Food Res Int 35:85–90CrossRefGoogle Scholar
  20. 20.
    Kim D-O, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326CrossRefGoogle Scholar
  21. 21.
    Mazalli MR, Saldanha T, Bragagnolo N (2003) The determination of cholesterol in eggs: A comparison of an enzymatic method with that of high performance liquid chromatography. Rev Inst Adolfo Lutz 62(1):49–53Google Scholar
  22. 22.
    Schmarr H, Gross HB, Shibamoto T (1996) Analysis of polar cholesterol oxidation products: Evaluation of a new method involving transesterification, solid phase extraction, and gas chromatography. J Agric Food Chem 44:512–517CrossRefGoogle Scholar
  23. 23.
    Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power. The FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  24. 24.
    Dávalos A, Gómez-Cordoves C, Bartolome B (2004) Extending applicability of the oxygen radical absorbance (ORAC) assay. J Agric Food Chem 52:48–54CrossRefGoogle Scholar
  25. 25.
    Nascimento JRO, Junior AV, Bassinello PZ, Mainardi JA, Purgato E, Lajolo FM (2006) Beta-amylase expression and starch degradation during banana ripening. Postharv Biol Tech 40(1):41–47CrossRefGoogle Scholar
  26. 26.
    Brand-Miller JC, Stockmann K, Atkinson F, Petocz P, Denyer G (2009) Glycemic index, postprandial glycemia, and the shape of the curve in healthy subjects: Analysis of a database of more than 1000 foods. Am J Clin Nutr 89:1–9Google Scholar
  27. 27.
    Menezes EW, Giuntini EB, Dan MCT, Lajolo FM (2009) New information on carbohydrates in the Brazilian food composition database. J Food Compos Anal 22(5):446–452CrossRefGoogle Scholar
  28. 28.
    Menezes EW, Dan MCT, Cardenette GHL, Goñi I, Bello-Pérez LA, Lajolo FM (2010) In vitro colonic fermentation and glycemic response of different kinds of unripe banana flour. Plant Foods Hum Nutr 65(4):379–385CrossRefGoogle Scholar
  29. 29.
    Universidade de São Paulo (USP) (1998) Tabela Brasileira de Composição de Alimentos-USP. Version 4.1. Faculdade de Ciências Farmacêuticas. USP, São Paulo, SP. Retrieved 2009-7-16 from
  30. 30.
    Ovando-Martinez M, Sáyago-Ayerdi S, Agama-Acevedo E, Goñi I, Bello-Pérez LA (2009) Unripe banana flour as an ingredient to increase the indigestible carbohydrates of pasta. Food Chem 113:121–126CrossRefGoogle Scholar
  31. 31.
    Fuentes-Zaragoza E, Riquelme-Navarrete MJ, Sánchez-Zapata E, Pérez-Álvarez JA (2010) Resistant starch as functional ingredient: A review. Food Res Int 43:931–942CrossRefGoogle Scholar
  32. 32.
    Dyner L, Drago SR, Piñeiro A, Sanchez R, Gonzalez R, Villamil E, Valencia ME (2007) Composición y aporte potencial de hierro, calcio y zinc de panes y fideos elaborados con harinas de trigo y amaranto. Arch Latinoam Nutr 57(1):69–77Google Scholar
  33. 33.
    Fernandez-Panchon MS, Villano D, Troncoso AM, Garcia-Parrilla MC (2008) Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Crit Rev Food Sci 48(7):649–671CrossRefGoogle Scholar
  34. 34.
    Haralampu SG (2000) Resistant starch—A review of the physical properties and biological impact of RS3. Carbohydr Polym 41:285–292CrossRefGoogle Scholar
  35. 35.
    Agência Nacional de Vigilancia Sanitária (ANVISA) (2001) Resolução—RDC nº 12, 02- 02–2001Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Elizabete Wenzel Menezes
    • 1
    • 6
    Email author
  • Carmen Cecília Tadini
    • 2
  • Tatiana Beatris Tribess
    • 2
  • Angela Zuleta
    • 3
  • Julieta Binaghi
    • 3
  • Nelly Pak
    • 4
  • Gloria Vera
    • 4
  • Milana Cara Tanasov Dan
    • 1
  • Andréa C. Bertolini
    • 5
  • Beatriz Rosana Cordenunsi
    • 1
  • Franco M. Lajolo
    • 1
  1. 1.Department of Food and Experimental Nutrition, Faculty of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
  2. 2.Department of Chemical Engineering, Escola PolitécnicaUniversity of São PauloSão PauloBrazil
  3. 3.Faculty of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
  4. 4.Department of Nutrition, Faculty of MedicineUniversity of ChileSantiagoChile
  5. 5.EMBRAPA Food TechnologyRio de JaneiroBrazil
  6. 6.Departamento de Alimentos e Nutrição Experimental, FCFUniversidade de São PauloSão PauloBrazil

Personalised recommendations