Skip to main content
Log in

Non-normal simultaneous regression models for customer linkage analysis

  • Published:
QME Aims and scope Submit manuscript

Abstract

Simultaneous systems of equations with non-normal errors are developed to study the relationship between customer and employee satisfaction. Customers interact with many employees, and employees serve many customers, such that a one-to-one mapping between customers and employees is not possible. Analysis proceeds by relating, or linking, distribution percentiles among variables. Such analysis is commonly encountered in marketing when data are from independently collected samples. We demonstrate our model in the context of retail banking, where drivers of customer and employee satisfaction are shown to be percentile-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, E. W., & Mittal, V. (2000). Strengthening the satisfaction-profit chain. Journal of Service Research, 3, 107–120 (Nov).

    Article  Google Scholar 

  • Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12, 125–143 (Spring).

    Article  Google Scholar 

  • Fernandez, C., & Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93, 359–371.

    Article  Google Scholar 

  • Greene, W. H. (2003). Econometric analysis. New Jersey: Prentice Hall.

    Google Scholar 

  • Heskett, J. L., Jones, T. O., Loveman, G. W., Earl Sasser Jr., W., & Schlesinger, L. A. (1994). Putting the service-profit chain to work. Harvard Business Review, 72, 164–170 (Mar/Apr).

    Google Scholar 

  • Heskett, J. L., Sasser Jr., W. E., & Schlesinger, L. A. (1997). The service profit chain. New York: Free Press.

    Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47, 263–291.

    Article  Google Scholar 

  • Kamakura, W. A., Mittal, V., de Rosa, F., & Mazzon, J. A. (2002). Assessing the service-profit chain. Marketing Science, 21(3), 294–317.

    Article  Google Scholar 

  • Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.

    Google Scholar 

  • Koenker, R., & Bassett Jr., G. (1978). Regression quantiles. Econometrica, 46, 33–50.

    Article  Google Scholar 

  • Kottas, A., & Krnjajic, M. (2007). Bayesian nonparametric modeling in quantile regression. Working paper, Santa Cruz: Department of Applied Mathematics and Statistics, University of California.

  • Morgan, N. A., Anderson, E. W., & Mittal, V. (2005). Understanding firms’ customer satisfaction information usage. Journal of Marketing, 69, 131–151.

    Article  Google Scholar 

  • Mittal, V., Ross Jr., W. T., & Baldasare, P. M. (1998). The asymmetric impact of negative and positive attribute-level performance on overall satisfaction and repurchase intentions. Journal of Marketing, 62, 33–47.

    Article  Google Scholar 

  • Newton, M., & Raftery, A. (1994). Approximate Bayesian interference by the weighted likelihood bootstrap. Journal of the Royal Statistical Society Series B, 56, 3–48.

    Google Scholar 

  • Rossi, P. E., Allenby, G. M., & McCulloch, R. (2005). Bayesian statistics and marketing. New York: Wiley.

    Google Scholar 

  • Rust, R. T., & Chung, T. S. (2006). Marketing models of service and relationships. Marketing Science, 25, 560–580.

    Article  Google Scholar 

  • Streukens, S., & De Ruyter, K. (2004). Reconsidering nonlinearity and asymmetry in customer satisfaction and loyalty models: An empirical study in three retail service settings. Marketing Letters, 15, 99–111.

    Article  Google Scholar 

  • Yu, K., & Moyeed, R. A. (2001). Bayesian quantile regression. Statistics and Probability Letters, 54, 437–447.

    Article  Google Scholar 

  • Yu, K., & Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics: Theory & Methods, 34, 1867–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg M. Allenby.

Appendix

Appendix

1.1 Estimation algorithms

Estimation proceeds by recursively generating draws from the full conditional distribution of all model parameters. The likelihood of the data can be factored as:

$$\pi {\left( {\left. {y_{A} ,y_{B} } \right|\alpha ,\beta ,\theta _{A} ,\theta _{B} } \right)} = \pi {\left( {\left. {\varepsilon _{{y_{A} }} ,\varepsilon _{{y_{B} }} } \right|\alpha ,\beta ,\theta _{A} ,\theta _{B} } \right)} \times {\left| {J_{{{\left( {\varepsilon _{{_{{yA}} }} ,\varepsilon _{{_{{yB}} }} } \right)} \to {\left( {y_{A} ,y_{B} } \right)}}} } \right|}$$

where the first factor corresponds to Eq. 1 and the second factor corresponds to Eq. 2. θ A and θ B represent other model parameters specific to the assumed distributions of the error terms. All model parameters are estimated using a random-walk Metropolis–Hastings algorithm where the likelihood contribution is of the form:

$${\left[ {\alpha \left| {else} \right.} \right]} \propto {\prod\limits_{j = 1}^J \pi }{\left( {\varepsilon _{{y_{{A,j}} }} ,\varepsilon _{{y_{{B,j}} }} \left| {\alpha ,\beta ,\theta _{A} ,\theta _{B} } \right.} \right)} \times {\left| {J_{{{\left( {\varepsilon _{{_{{yA,j}} }} ,\varepsilon _{{_{{yB,j}} }} } \right)} \to {\left( {y_{{_{{A,j}} }} ,y_{{_{{B,j}} }} } \right)}}} } \right|}$$

where

$$J_{{{\left( {\varepsilon _{{_{{yA,j}} }} ,\varepsilon _{{_{{yB,j}} }} } \right)} \to {\left( {y_{{A,j}} ,y_{{B,j}} } \right)}}} = {\left| {\frac{{\partial \varepsilon _{j} }}{{\partial y_{j} }}} \right|} = 1 - \alpha _{1} \beta _{1} $$

1.2 Model 1: Asymmetric Laplace

$$\begin{array}{*{20}c} {\varepsilon _{yA} \sim {\text{AL}}\left( {0,\sigma _{yA} ,p_{yA} } \right)} \\ {\varepsilon _{yB} \sim {\text{AL}}\left( {0,\sigma _{yB} ,p_{yB} } \right)} \\ {f_p \left( {\left. y \right|\mu ,\sigma ,p} \right) = \frac{{p\left( {1 - p} \right)}}{\sigma }\exp \left\{ { - \rho _p \left( {\frac{{y - \mu }}{\sigma }} \right)} \right\}} \\ \end{array} $$

Prior distributions for all slope coefficients were specified as normal with mean zero and covariance equal to 100I. Inverted chi-square priors with 3 degrees of freedom and prior sum of squares equal to .01 were used for the scale parameters (σ yA , σ yB ). Priors for p yA and \(p_{y_B } \) were specified as uniform(0,1).

1.3 Model 2: Skewed t

$$\begin{array}{*{20}c} {\varepsilon _{y_A } \sim {\text{skewt}}\left( {0,\gamma _{y_A } ,\sigma _{y_A } ,\nu _{y_A } } \right)} \\ {\varepsilon _{y_B } \sim {\text{skewt}}\left( {0,\gamma _{y_B } ,\sigma _{y_B } ,\nu _{y_B } } \right)} \\ {p\left( {\left. {y_i } \right|\beta ,\sigma ,\nu ,\gamma } \right) = \frac{2}{{\gamma + \gamma ^{ - 1} }}\frac{{\Gamma \left( {\frac{{\nu + 1}}{2}} \right)}}{{\Gamma \left( {\frac{\nu }{2}} \right)\left( {\pi \nu } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}\sigma ^{ - 1} \times \left[ {1 + \frac{{\left( {y_i - x_i^\prime \beta } \right)^2 }}{{\nu \sigma ^2 }}\left\{ {\frac{1}{{\gamma ^2 }}I_{\left[ {0,\infty } \right)} \left( {y_i - x_i^\prime \beta } \right) + \gamma ^2 I_{\left( { - \infty ,0} \right)} \left( {y_i - x_i^\prime \beta } \right)} \right\}} \right]^{{{ - \left( {\nu + 1} \right)} \mathord{\left/ {\vphantom {{ - \left( {\nu + 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} } \\ \end{array} $$

Prior distributions for all slope coefficients were specified as normal with mean zero and covariance equal to 100I. Inverted chi-square priors with 3 degrees of freedom and prior sum of squares equal to 0.01 were used for the scale parameters (\(\sigma _{y_A } ,\sigma _{y_B } \)). Priors for \(\gamma _{y_A } \) and \(\gamma _{y_B } \) were specified as inverted chi-square with 3 degrees of freedom and prior sum of squares equal to 0.1. A uniform(0,150) prior was used for \(\nu _{y_A } \) and \(\nu _{y_B } \).

1.4 Model 3: Mixture of multivariate normals

$$\left( {\begin{array}{*{20}c} {\varepsilon _{y_A } } \\ {\varepsilon _{y_B } } \\ \end{array} } \right) \sim \sum\limits_k {\phi _k N\left( {\mu _k ,\Sigma _k } \right)} $$
  1. 1.

    Generate z|μ k , Σ k , φ

    $$\begin{array}{*{20}l} {z_i \sim {\text{Multinomial}}\left( {\pi _i } \right)} \hfill \\ {\pi _i = \phi _k \frac{{\varphi \left( {\left. {\varepsilon _{y_A } ,\varepsilon _{y_B } } \right|\mu _k ,\Sigma _k } \right)}}{{\sum\limits_k {\varphi \left( {\left. {\varepsilon _{y_A } ,\varepsilon _{y_B } } \right|\mu _k ,\Sigma _k } \right)} }}} \hfill \\ \end{array} $$

Where ϕ(·) is the multivariate normal density and z i is a latent indicator variable that assigns each observation in sample to one of the K mixture components.

  1. 2.

    φ|z

    $$\begin{array}{*{20}l} {\phi \sim {\text{Dirichlet}}\left( {\widetilde\alpha } \right)} \hfill \\ {\widetilde\alpha = n_k + \alpha _k } \hfill \\ {n_k = \sum\limits_{i = 1}^n {I\left( {z_i = k} \right)} } \hfill \\ \end{array} $$

Where α k is a prior value that is set equal to 1 for all k.

  1. 3.

    μ k , Σ k |z, α, β

Conditional on the latent indicator variable z i each observation can be assigned to one of the K mixture components. Inference for μ k , Σ k can then proceeds through the use of the standard multivariate regression:

$$\begin{array}{*{20}l} {\Sigma _k \sim {\text{IW}}\left( {\nu _0 + n_k ,V_0 + S_k } \right)} \hfill \\ {\mu _k \sim N\left( {\widetilde\mu ,\Sigma _k \otimes \left( {X_k^\prime X_k + A_\mu } \right)^{ - 1} } \right)} \hfill \\ \end{array} $$

Where: X k  = ι k , the unit vector with length equal to the number of observations assigned to component k and:

$$\widetilde\mu _k = {\text{vec}}\left( {\widetilde{\rm M}_k } \right),\;\widetilde{\rm M}_k = \left( {X_k^\prime X_k + A_\mu } \right)^{ - 1} \left( {X_k^\prime X_k \widehat{\rm M}_k + A_\mu \overline {\rm M} } \right),$$
$${\text{S}}_k = \left( {Y_k - X_k \tilde M_k } \right)^\prime \left( {Y_k - X_k \tilde M_k } \right) + \left( {\tilde M_k - \overline M } \right)^\prime A_\mu \left( {\tilde M_k - \overline M } \right),$$

and \(\hat M = \left( {X_k^\prime X_k } \right)^{ - 1} \left( {X_k^\prime Y_k } \right)\)

Prior parameters were specified as follows: ν 0 = 3, \(V_0 = \left[ {\begin{array}{*{20}c} {0.1}&0 \\ 0&{0.1} \\ \end{array} } \right]\), A = 0.01, \(\overline M = \left[ {\begin{array}{*{20}c} 0&0 \\ \end{array} } \right]\)

  1. 4.

    α, β|μ k , Σ k , z

α and β can be drawn using a standard random walk Metropolis-Hastings algorithm where the likelihood for the model can be computed as follows:

$$\prod\limits_i {\prod\limits_k {\varphi \left( {\left. {\varepsilon _{i,n_k }^{y_A } ,\varepsilon _{i,n_k }^{y_B } } \right|\mu _k ,\Sigma _k } \right)} } \left| {J_{\varepsilon \to y} } \right|$$

Prior distributions for both α and β were specified as multivariate normal with mean 0 and covariance equal to 100I. To improve mixing of the Markov chain we found it useful to draw the regression coefficients in two distinct blocks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dotson, J.P., Retzer, J. & Allenby, G.M. Non-normal simultaneous regression models for customer linkage analysis. Quant Mark Econ 6, 257–277 (2008). https://doi.org/10.1007/s11129-007-9037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11129-007-9037-1

Keywords

JEL classification

Navigation