Skip to main content
Log in

Restricting to the chip architecture maintains the quantum neural network accuracy

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the era of noisy intermediate-scale quantum devices, variational quantum algorithms (VQAs) stand as a prominent strategy for constructing quantum machine learning models. These models comprise both a quantum and a classical component. The quantum facet is characterized by a parametrization U, typically derived from the composition of various quantum gates. On the other hand, the classical component involves an optimizer that adjusts the parameters of U to minimize a cost function C. Despite the extensive applications of VQAs, several critical questions persist, such as determining the optimal gate sequence, devising efficient parameter optimization strategies, selecting appropriate cost functions, and understanding the influence of quantum chip architectures on the final results. This article aims to address the last question, emphasizing that, in general, the cost function tends to converge toward an average value as the utilized parameterization approaches a 2-design. Consequently, when the parameterization closely aligns with a 2-design, the quantum neural network model’s outcome becomes less dependent on the specific parametrization. This insight leads to the possibility of leveraging the inherent architecture of quantum chips to define the parametrization for VQAs. By doing so, the need for additional swap gates is mitigated, consequently reducing the depth of VQAs and minimizing associated errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The numerical data generated in this work are available at https://github.com/lucasfriedrich97/Restricting_to_the_chip_architecture_maintains_the_quantum_neural_network_accuracy

References

  1. Biamonte, J., et al.: Quantum machine learning. Nature 549, 195 (2017)

    Article  ADS  Google Scholar 

  2. Schuld, M., Petruccione, F.: Machine Learning with Quantum Computers. Springer, Switzerland (2021)

    Book  Google Scholar 

  3. Cerezo, M., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3, 625 (2021)

    Article  Google Scholar 

  4. Tilly, J., et al.: The variational quantum Eigensolver: a review of methods and best practices. Phys. Rep. 986, 1 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12, 1791 (2021)

    Article  ADS  Google Scholar 

  6. Patti, T.L., Najafi, K., Gao, X., Yelin, S.F.: Entanglement devised barren plateau mitigation. Phys. Rev. Res. 3, 033090 (2021)

    Article  Google Scholar 

  7. Marrero, C.O., Kieferová, M., Wiebe, N.: Entanglement-induced barren plateaus. PRX Quantum 2, 040316 (2021)

    Article  Google Scholar 

  8. Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3, 010313 (2022)

    Article  ADS  Google Scholar 

  9. Wang, S., et al.: Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 12, 6961 (2021)

    Article  ADS  Google Scholar 

  10. Arrasmith, A., Cerezo, M., Czarnik, P., Cincio, L., Coles, P.J.: Effect of barren plateaus on gradient-free optimization. Quantum 5, 558 (2021)

    Article  Google Scholar 

  11. Friedrich, L., Maziero, J.: Avoiding barren plateaus with classical deep neural networks. Phys. Rev. A 106, 042433 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  12. Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019)

    Article  Google Scholar 

  13. Volkoff, T., Coles, P.J.: Large gradients via correlation in random parameterized quantum circuits. Quantum Sci. Technol. 6, 025008 (2021)

    Article  ADS  Google Scholar 

  14. Verdon, G., et al.: Learning to learn with quantum neural networks via classical neural networks. arXiv:1907.05415 [quant-ph]

  15. Skolik, A., McClean, J.R., Mohseni, M., van der Smagt, P., Leib, M.: Layerwise learning for quantum neural networks. Quantum Mach. Intell. 3, 5 (2021)

    Article  Google Scholar 

  16. Friedrich, L., Maziero, J.: Evolution strategies: application in hybrid quantum-classical neural networks. Quantum Inf. Process. 22, 132 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  17. Rebentrost, P., et al.: Quantum gradient descent and Newton’s method for constrained polynomial optimization. New J. Phys. 21, 073023 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Schuld, M., et al.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331 (2019)

    Article  ADS  Google Scholar 

  19. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2, 1900070 (2019)

    Article  Google Scholar 

  20. Hubregtsen, T., et al.: Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability. Quantum Mach. Intell. 3, 1 (2021)

    Article  Google Scholar 

  21. Friedrich, L., Maziero, J.: Quantum neural network cost function concentration dependency on the parametrization expressivity. Sci. Rep. 13, 9978 (2023)

    Article  ADS  Google Scholar 

  22. Nash, B., Gheorghiu, V., Mosca, M.: Quantum circuit optimizations for NISQ architectures. Quantum Sci. Technol. 5, 025010 (2020)

    Article  ADS  Google Scholar 

  23. Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022)

    Article  ADS  Google Scholar 

  24. Kandala, A., et al.: Hardware-efficient variational quantum Eigensolver for small molecules and quantum magnets. Nature 549, 7671 (2017)

    Article  Google Scholar 

  25. Benedetti, M., Fiorentini, M., Lubasch, M.: Hardware-efficient variational quantum algorithms for time evolution. Phys. Rev. Res. 3, 033083 (2021)

    Article  Google Scholar 

  26. Nguyen, T., Paik, I., Watanobe, Y., Thang, T.C.: An evaluation of hardware-efficient quantum neural networks for image data classification. Electronics 11, 3 (2022)

    Article  Google Scholar 

  27. Du, Y., Huang, T., You, S., Hsieh, M.-H., Tao, D.: Quantum circuit architecture search for variational quantum algorithms. npj Quantum Inf. 8, 1 (2022)

    Article  Google Scholar 

  28. Schuld, M., Sweke, R., Meyer, J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 103, 032430 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  29. Pérez-Salinas, A., et al.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020)

    Article  Google Scholar 

  30. Shao, C.: A quantum model for multilayer perceptron. arXiv:1808.10561 [quant-ph]

  31. Wei, S.J., Chen, Y.H., Zhou, Z.R., Long, G.L.: A quantum convolutional neural network on NISQ devices. AAPPS Bull. 32, 2 (2022)

    Article  ADS  Google Scholar 

  32. Schuld, M.: Supervised quantum machine learning models are kernel methods. arXiv:2101.11020 [quant-ph]

  33. Liu, J., et al.: Hybrid quantum-classical convolutional neural networks. Sci. China Phys. Mech. Astron. 64, 290311 (2021)

    Article  ADS  Google Scholar 

  34. Dankert, C., Cleve, R., Emerson, J., Livine, E.: Exact and approximate unitary \(2\)-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009)

    Article  ADS  Google Scholar 

  35. Puchała, Z., Miszczak, J.A.: Symbolic integration with respect to the Haar measure on the unitary group. Bull. Pol. Acad. Sci.-Tech. Sci. 65, 21 (2017)

    Google Scholar 

  36. Kingma, D. P., Ba., J.: Adam: a method for stochastic optimization. arXiv:1412.6980 [cs.LG]

  37. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council for Scientific and Technological Development (CNPq), Grants Nos. 309862/2021-3, 409673/2022-6 and 421792/2022-1, and by the National Institute for the Science and Technology of Quantum Information (INCT-IQ), Grant No. 465469/2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Maziero.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedrich, L., Maziero, J. Restricting to the chip architecture maintains the quantum neural network accuracy. Quantum Inf Process 23, 131 (2024). https://doi.org/10.1007/s11128-024-04336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04336-7

Keywords

Navigation