Skip to main content
Log in

A secure controlled quantum image steganography scheme based on the multi-channel effective quantum image representation model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this article, we introduce a multi-channel effective representation of quantum images (MCEQI) based on the improved flexible representation of quantum images (IFRQI) to facilitate the quantum analysis of colored digital images. We use an effective method to encode the intensity value of each pixel of a color digital image into a quantum state vector that yields a highly distinctive probability distribution in response to projective measurements, and thus allows for accurate restoration of the image information. In addition, we propose a high-capacity steganography scheme based on the MCEQI model. We embed the color information of a secret color image in the MCEQI state of a carrier color image by using controlled rotations. The sizes of the secret image and cover image are considered to be \(2^n\times 2^n\) and \(2^{n+1}\times 2^{n+1}\), respectively. We divide the red, green, and blue channel information of the secret image into four planes, each with a depth of 2 bits. For each plane, we construct an array of angle values that encode the color information. The encoded information is then embedded in the MCEQI state of the cover image using controlled rotations determined by the key K, derived from the fractional-order erbium-doped laser chaotic system. The process of extracting the secret image is the inverse of the embedding process and requires the inverse key \(K'\). Finally, we perform the analysis of the embedding capacity, time complexity, and visual effects to establish the effectiveness of the proposed steganography scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the corresponding author upon reasonable request.

Code Availability

The code in this paper is not publicly available at this time but may be obtained from the corresponding author upon reasonable request.

References

  1. Wang, Z., Xu, M., Zhang, Y.: Review of quantum image processing. Arch. Comput. Methods Eng. 29(2), 1–25 (2021)

    MathSciNet  ADS  Google Scholar 

  2. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sun, B., Iliyasu, A.M., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Informat. 17, 404–417 (2013)

    Article  Google Scholar 

  4. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Li, H.-S., Zhu, Q., Zhou, R.-G., Li, M.-C., Song, l., Ian, H.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

  6. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 1–14 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Khan, R.A.: An improved flexible representation of quantum images. Quantum Inf. Process. 18(7), 1–19 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhu, H.-H., Chen, X.-B., Yang, Y.-X.: Image preparations of multi-mode quantum image representation and their application on quantum image reproduction. Optik 251, 168321 (2022)

    Article  ADS  Google Scholar 

  9. Nasr, N., Younes, A., Elsayed, A.: Efficient representations of digital images on quantum computers. Multimed. Tools Appl. 80(25), 34019–34034 (2021)

    Article  Google Scholar 

  10. Amal, R., Kannan, S.: Manifestation of quantum images using unitary matrix encoding. Eur. Phys. J. Plus 137(4), 1–24 (2022)

    Article  ADS  Google Scholar 

  11. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011). Theoretical Computer Science Issues in Image Analysis and Processing

  12. Caraiman, S., Manta, V.I.: Quantum image filtering in the frequency domain. Adv. Electr. Comput. Eng. 13(3), 77–85 (2013)

    Article  Google Scholar 

  13. Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Jiang, N., Dang, Y., Wang, J.: Quantum image matching. Quantum Inf. Process. 15(9), 3543–3572 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Jiang, N., Wu, W.-Y., Wang, L.: The quantum realization of Arnold and fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Zhou, R.-G., Sun, Y.-J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Liang, H.-R., Tao, X.-Y., Zhou, N.-R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15(7), 2701–2724 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Khan, M., Rasheed, A.: Permutation-based special linear transforms with application in quantum image encryption algorithm. Quantum Inf. Process. 18(10), 1–21 (2019)

    Article  MATH  Google Scholar 

  20. Khan, M., Rasheed, A.: A fast quantum image encryption algorithm based on affine transform and fractional-order Lorenz-like chaotic dynamical system. Quantum Inf. Process. 21(4), 1–34 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moiré pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    Article  MATH  Google Scholar 

  22. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  MATH  Google Scholar 

  23. Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the gray code for colored quantum images. Quantum Inf. Process. 16(10), 1–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Abd El-Latif, A.A., Abd-El-Atty, B., Hossain, M.S., Rahman, M.A., Alamri, A., Gupta, B.B.: Efficient quantum information hiding for remote medical image sharing. IEEE Access 6, 21075–21083 (2018)

    Article  Google Scholar 

  25. Zhou, R.-G., Luo, J., Liu, X., Zhu, C., Wei, L., Zhang, X.: A novel quantum image steganography scheme based on LSB. Int. J. Theor. Phys. 57(6), 1848–1863 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qu, Z., Sun, H., Zheng, M.: An efficient quantum image steganography protocol based on improved EMD algorithm. Quantum Inf. Process. 20(2), 1–29 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, W.-W., Zhou, R.-G., Liu, X.-A., Luo, J., Luo, G.-F.: Quantum image steganography algorithm based on modified exploiting modification direction embedding. Quantum Inf. Process. 19(5), 1–28 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, M.-X., Yang, H.-M., Jiang, D.-H., Yan, B., Pan, J.-S., Liu, T.: A novel quantum color image steganography algorithm based on turtle shell and LSB. Quantum Inf. Process. 21(4), 1–32 (2022)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Qu, Z., Chen, S., Wang, X.: A secure controlled quantum image steganography algorithm. Quantum Inf. Process. 19(10), 1–25 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Luo, J., Zhou, R.-G., Hu, W.-W., Luo, G.-F., Liu, G.: Detection of steganography in quantum grayscale images. Quantum Inf. Process. 19(5), 1–17 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, H., Qu, Z., Sun, L., Chen, X., Xu, G.: High-efficiency quantum image steganography protocol based on double-layer matrix coding. Quantum Inf. Process. 21(5), 1–27 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Luo, L., Tee, T., Chu, P.: Chaotic behavior in erbium-doped fiber-ring lasers. JOSA B 15(3), 972–978 (1998)

    Article  ADS  Google Scholar 

  33. Li, X., Mou, J., Xiong, L., Wang, Z., Xu, J.: Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption. Opt. Laser Technol. 140, 107074 (2021)

    Article  Google Scholar 

  34. Zhao, S., Yan, F., Chen, K., Yang, H.: Interpolation-based high capacity quantum image steganography. Int. J. Theor. Phys. 60(10), 3722–3743 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zeng, Q.-W., Wen, Z.-Y., Fu, J.-F., Zhou, N.-R.: Quantum watermark algorithm based on maximum pixel difference and tent map. Int. J. Theor. Phys. 60(9), 3306–3333 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xie, H.-W., Gao, Y.-J., Liu, X.-L., Zhang, J., Zhang, H.: A novel exploiting modification direction scheme and its application in quantum color image steganography. Quantum Inf. Process. 21(7), 249 (2022)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Yao, J.-L., Yang, H.-M., Jiang, D.-H., Yan, B., Pan, J.-S., Wang, M.-X.: A novel quantum image steganography algorithm based on double-layer gray code. Int. J. Theor. Phys. 62(3), 52 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubashar Khan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Rasheed, A. A secure controlled quantum image steganography scheme based on the multi-channel effective quantum image representation model. Quantum Inf Process 22, 268 (2023). https://doi.org/10.1007/s11128-023-04022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04022-0

Keywords

Navigation