Skip to main content
Log in

Efficacy of Moriya interaction to free the bound entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The current work shows the efficacy of Dzyaloshinshkii–Moriya interaction to free the bound entanglement. Based on the work (Sharma et al. in Quant. Info. Proc. 15:1539 2016), we present further results in two qutrits bound entangled state proposed by Jurkowski et al. We consider a closed system of two qutrits and an auxiliary qutrit which interacts with either one of the two qutrits in a closed system. We erase the auxiliary qutrit from the system by doing partial trace operation and open system dynamics has been studied. We have found, the probability amplitude of auxiliary qutrit does not affect the system, while DM interaction plays a major role to govern the dynamics. The realignment and CCNR criteria have been used to detect the bound entanglement in the state, while for quantification of entanglement the negativity has been used. We explored the dynamics with all the possible cases of Jurkowski et al. bound entangled state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. Lett. 47, 777 (1935)

    ADS  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, UK (2000)

    MATH  Google Scholar 

  3. Sharma, K.K., Gerdt, V.P., Gerdt, P.V.: Milestone Developments in Quantum Information and No-Go Theorems, Lecture Notes in Computer Science book series (LNCS, volume 12563) (2021)

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Lugiato, L., Gatti, A., Brambilla, E.: Quantum imaging. J. Opt. B Quantum Semiclass. Opt. 4, 176 (2002)

    Article  ADS  Google Scholar 

  8. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Horodecki, P., Horodecki, R.: Distillation and bound entanglement. Quant. Info. Comp. 1, 45 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dür, W., Cirac, J.I.: Activating bound entanglement in multiparticle systems. Phys. Rev. A. 62, 022302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. Kaneda, F., Shimizu, R., Ishizaka, S., Mitsumori, Y., Kosaka, H., Edamatsu, K.: Experimental activation of bound entanglement. Phys. Rev. Lett. 109, 040501 (2012)

    Article  ADS  Google Scholar 

  13. Amselem, E., Bourennane, M.: Experimental four-qubit bound entanglement. Nat. Phys. 5, 748 (2009)

    Article  Google Scholar 

  14. Lavoie, J., Kaltenbaek, R., Piani, M., Resch, K.J.: Experimental bound entanglement in a four-photon state. Phys. Rev. Lett. 105, 130501 (2010)

    Article  ADS  Google Scholar 

  15. Amselem, E., Sadiq, M., Bourennane, M.: Experimental bound entanglement through a pauli channel. Sci. Rep. 3, 1966 (2013)

    Article  ADS  Google Scholar 

  16. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Netherlands (1995)

    MATH  Google Scholar 

  17. Peres, A.: Higher order Schmidt decompositions. Phys. Lett. A 202, 16 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Schmidt, E.: Zur theorie der linearen und nichtlinearen integralgleichungen. Math. Ann. 63, 433 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ekert, A., Knight, P.L.: Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63, 415 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  22. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comp. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A. 232, 333 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Horodecki, M.: Entanglement measures. Quant. Info. Comp. 1, 3 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Chen, K., Wu, L.: A matrix realignment method for recognizing entanglement. Quant. Info. Comp. 3(3), 193 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Rudolph, O.: Further results on the cross norm criterion for separability. Quant. Inf. Proc. 4, 219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, C., Zhang, Y., Zhang, S., Guo, G.: Entanglement detection beyond the computable cross-norm or realignment criterion. Phys. Rev. A. 77, 060301(R) (2008)

    Article  ADS  Google Scholar 

  29. Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  30. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960)

    Article  ADS  Google Scholar 

  31. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  32. Qiang, Z., Xiao-Ping, Z., Qi-Jun, Z., Zhong-Zhou, R.: Entanglement dynamics of a Heisenberg chain with Dzyaloshinskii-Moriya interaction. Chin. Phys. B 18, 3210 (2009)

    Article  ADS  Google Scholar 

  33. Qiang, Z., Ping, S., Xiao-Ping, Z., Zhong-Zhou, R.: Control of entanglement sudden death induced by Dzyaloshinskii-Moriya interaction. Chin. Phys. C 34, 1583 (2010)

    Article  ADS  Google Scholar 

  34. Qiang, Z., Qi-Jun, Z., Xiao-Ping, Z., Zhong-Zhou, R.: Controllable entanglement sudden birth of Heisenberg spins. Chin. Phys. C 35, 135 (2011)

    Article  ADS  Google Scholar 

  35. Sharma, K.K., Awasth, S.K., Pandey, S.N.: Entanglement sudden death and birth in qubit-qutrit systems under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 12, 3437 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sharma, K.K., Pandey, S.N.: Entanglement dynamics in two parameter Qubit-Qutrit states under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 13, 2017 (2014)

    Article  ADS  MATH  Google Scholar 

  37. Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinshkii-Moriya interaction on quantum correlations in two-qubit werner states and MEMS. Quantum Inf. Process. 14, 1361 (2015)

    Article  ADS  MATH  Google Scholar 

  38. Sharma, K.K., Pandey, S.N.: Dynamics of entanglement in Qubit-Qutrit with X-component of DM interaction. Commun. Theor. Phys. 65, 278 (2016)

    Article  ADS  Google Scholar 

  39. Sharma, K.K., Pandey, S.N.: Robustness of Greenberger-Horne-Zeilinger and W states against Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 15, 4995 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Sharma, K.K., Pandey, S.N.: Dzyaloshinskii-Moriya interaction as an agent to free the bound entangled states. Quantum Inf. Process. 15, 1539 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Bruss, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)

    Article  ADS  Google Scholar 

  42. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  43. Oberst, H.: Resonance fluorescence of single Barium ions, diplomarbeit. Innsbruck University (1999)

  44. Guo-Qiang, Z., Xiao-Guang, W.: Quantum dynamics of bound entangled states. Commun. Theor. Phys. 49, 343 (2008)

    Article  ADS  MATH  Google Scholar 

  45. Song, W., Chen, L., Zhu, S.: Sudden death of distillability in qutrit-qutrit systems. Phys. Rev. A 80, 012331 (2009)

    Article  ADS  Google Scholar 

  46. Ali, M.: Distillability sudden death in qutrit-qutrit systems under global and multilocal dephasing. Phys. Rev. A 81, 042303 (2010)

    Article  ADS  Google Scholar 

  47. Ali, M.: Distillability sudden death in qutrit-qutrit systems under amplitude damping. J. Phys. B At. Mol. Opt. Phys. 43, 045504 (2010)

    Article  ADS  Google Scholar 

  48. Khan, S., Khan, M.K.: Nondistillability of distillable qutrit-qutrit states under depolarising noise. J. Mod. Opt. 58, 918 (2011)

    Article  ADS  Google Scholar 

  49. Xiao-San, M., Ming-Fan, R., Guang-Xing, Z., An-Min, W.: Dynamics of entanglement of Qutrit-Qutrit states with stochastic dephasing. Commun. Theor. Phys. 56, 258 (2011)

    Article  ADS  MATH  Google Scholar 

  50. Jiang, H., Mao-Fa, F., Bai-Yuan, Y., Xiang, L.: Distillability sudden death in a two qutrit systems under a thermal reservoir. Chin. Phys. B. 21, 084205 (2012)

    Article  ADS  Google Scholar 

  51. Sharma, K.K., Sinha, S.: Trade-off between squashed entanglement and concurrence in bipartite quantum states. Int. J. Theor. Phys. 60, 3651 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jurkowski, J., Chruscinski, D., Rutkowski, A.: A class of bound entangled states of two qutrits. Open Syst. Inf. Dyn. 16, 235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Klimov, A.B., Guzmán, R., Retamal, J.C., Saavedra, C.: Qutrit quantum computer with trapped ions. Phys. Rev. A 67, 062313 (2003)

    Article  ADS  Google Scholar 

  54. Hugh, D Mc.: Trapped-ion qutrit spin molecule quantum computer. New J. Phys. 7, 174 (2005)

    Article  Google Scholar 

  55. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.K., Sinha, S. & Chandra, K. Efficacy of Moriya interaction to free the bound entangled state. Quantum Inf Process 21, 21 (2022). https://doi.org/10.1007/s11128-021-03383-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03383-8

Keywords

Navigation