Skip to main content
Log in

Quantum tomography benchmarking

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recent advances in quantum computers and simulators are steadily leading us toward full-scale quantum computing devices. Due to the fact that debugging is necessary to create any computing device, quantum tomography (QT) is a critical milestone on this path. In practice, the choice between different QT methods faces the lack of comparison methodology. Modern research provides a wide range of QT methods, which differ in their application areas, as well as experimental and computational complexity. Testing such methods is also being made under different conditions, and various efficiency measures are being applied. Moreover, many methods have complex programming implementations; thus, comparison becomes extremely difficult. In this study, we have developed a general methodology for comparing quantum-state tomography methods. The methodology is based on an estimate of the resources needed to achieve the required accuracy. We have developed a software library (in MATLAB and Python) that makes it easy to analyze any QT method implementation through a series of numerical experiments. The conditions for such a simulation are set by the number of tests corresponding to real physical experiments. As a validation of the proposed methodology and software, we analyzed and compared a set of QT methods. The analysis revealed some method-specific features and provided estimates of the relative efficiency of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Some measurements protocols could consider only a part of the measurement events and do not form complete POVM measurements. In this case, assuming N to be the total number of observed events could result in \(\eta > 1\) according to Eq. (3).

References

  1. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505 (2019)

    Article  ADS  Google Scholar 

  2. Bernien, H., Schwartz, S., Keesling, A., Levine, H., Omran, A., Pichler, H., Choi, S., Zibrov, A.S., Endres, M., Greiner, M., et al.: Probing many-body dynamics on a 51-atom quantum simulator. Nature 551(7682), 579 (2017)

    Article  ADS  Google Scholar 

  3. Banaszek, K., Cramer, M., Gross, D.: Focus on quantum tomography. New J. Phys. (2013)

  4. Paris, M., Rehacek, J.: Quantum state estimation. In: Lecture Notes in Physics, p. 649. Springer, Heidelberg (2004)

  5. D’Ariano, G., Paris, M., Sacchi, M.: Quantum tomography (2003)

  6. Lvovsky, A., Raymer, M.: Continuous-variable optical quantum-state tomography (2009)

  7. Bogdanov, Yu.I., Gavrichenko, A.K., Kravtsov, K.S., Kulik, S.P., Moreva, E.V., Soloviev, A.A.: Statistical reconstruction of mixed states of polarization qubits (2011)

  8. Pogorelov, I.A., Struchalin, G.I., Straupe, S.S., Radchenko, I.V., Kravtsov, K.S., Kulik. S.P.: Experimental adaptive process tomography (2017)

  9. Huszár, F., Houlsby, N.M.: Adaptive Bayesian quantum tomography (2012)

  10. Bagan, E., Ballester, M.A., Gill, R.D., Muñoz-Tapia, R., Romero-Isart, O.: Separable measurement estimation of density matrices and its fidelity gap with collective protocols. Phys. Rev. Lett. 97(13), 130501 (2006)

  11. Straupe, S.S.: Adaptive quantum tomography. JETP Lett. 104(7), 510 (2016)

    Article  ADS  Google Scholar 

  12. Smolin, J.A., Gambetta, J.M., Smith, G.: Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise. Phys. Rev. Lett. 108(7), 070502 (2012)

  13. De Burgh, M.D., Langford, N.K., Doherty, A.C., Gilchrist, A.: Choice of measurement sets in qubit tomography. Phys. Rev. A 78(5), 052122 (2008)

  14. Banaszek, K., D’ariano, G.M., Paris, M.G.A., Sacchi, M.F.: Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61(1), 010304 (1999)

  15. Bolduc, E., Knee, G.C., Gauger, E.M., Leach, J.: Projected gradient descent algorithms for quantum state tomography. npj Quantum Inf. 3(1), 1 (2017)

    Article  Google Scholar 

  16. Shang, J., Zhang, Z., Ng, H.K.: Superfast maximum-likelihood reconstruction for quantum tomography. Phys. Rev. A 95(6), 062336 (2017)

  17. Gill, R.D., Massar, S.: In state estimation for large ensembles. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 178–214. World Scientific (2005)

  18. Bogdanov, Yu.I.: Unified statistical method for reconstructing quantum states by purification. J. Exp. Theor. Phys. 108(6), 928 (2009)

    Article  ADS  Google Scholar 

  19. Bogdanov, Yu.I., Brida, G., Bukeev, I.D., Genovese, M., Kravtsov, K.S., Kulik, S.P., Moreva, E.V., Soloviev, A.A., Shurupov, A.P.: Statistical estimation of the quality of quantum-tomography protocols. Phys. Rev. A 84(4), 042108 (2011)

  20. Bantysh, B.I., Chernyavskiy, AYu., Bogdanov, Yu.I.: Comparison of tomography methods for pure and almost pure quantum states. JETP Lett. 111(9), 512 (2020)

    Article  ADS  Google Scholar 

  21. Flammia, S.T., Gross, D., Liu, Y.K., Eisert, J.: Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14(9), 095022 (2012)

  22. Struchalin, G.I., Kovlakov, E.V., Straupe, S.S., Kulik, S.P.: Adaptive quantum tomography of high-dimensional bipartite systems. Phys. Rev. A 98(3), 032330 (2018)

  23. List of datasets for machine-learning research. https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research. Accessed 13 Dec 201

  24. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22, NIST (2001)

  25. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62(3), 032307 (2000)

  26. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. Liang, Y.C., Yeh, Y.H., Mendonça, P.E., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)

  28. Bogdanov, Yu.I., Brida, G., Genovese, M., Kulik, S.P., Moreva, E.V., Shurupov, A.P.: Statistical estimation of the efficiency of quantum state tomography protocols. Phys. Rev. Lett. 105(1), 010404 (2010)

  29. Hubert, M., Vandervieren, E.: An adjusted boxplot for skewed distributions. Comput. Stat. Data Anal. 52(12), 5186 (2008)

    Article  MathSciNet  Google Scholar 

  30. Brys, G., Hubert, M., Struyf, A.: A comparison of some new measures of skewness. In: Developments in Robust Statistics, pp. 98–113. Physica, Heidelberg (2003)

  31. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Zyczkowski, K., Sommers, H.J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34(35), 7111 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  33. Struchalin, G.I., Pogorelov, I.A., Straupe, S.S., Kravtsov, K.S., Radchenko, I.V., Kulik, S.P.: Experimental adaptive quantum tomography of two-qubit states. Phys. Rev. A 93(1), 012103 (2016)

  34. Palmieri, A.M., Kovlakov, E., Bianchi, F., Yudin, D., Straupe, S., Biamonte, J.D., Kulik, S.: Experimental neural network enhanced quantum tomography. npj Quantum Inf. 6(1), 1 (2020)

  35. Dür, W., Hein, M., Cirac, J.I., Briegel, H.J.: Standard forms of noisy quantum operations via depolarization. Phys. Rev. A 72(5), 052326 (2005)

  36. Watson, T.F., Philips, S.G.J., Kawakami, E., Ward, D.R., Scarlino, P., Veldhorst, M., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., et al.: A programmable two-qubit quantum processor in silicon. Nature 555(7698), 633 (2018)

  37. Tosi, G., Mohiyaddin, F.A., Schmitt, V., Tenberg, S., Rahman, R., Klimeck, G., Morello, A.: Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun. 8(1), 1 (2017)

    Article  Google Scholar 

  38. Wu, Y., Wang, Y., Qin, X., Rong, X., Du, J.: A programmable two-qubit solid-state quantum processor under ambient conditions. npj Quantum Inf. 5(1), 1 (2019)

  39. Wright, K., Beck, K.M., Debnath, S., Amini, J.M., Nam, Y., Grzesiak, N., et al.: Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019)

    Article  ADS  Google Scholar 

  40. Matlab library for benchmarking quantum tomography methods. https://github.com/PQCLab/mQTB. Accessed 30 Dec 2020

  41. Python library for benchmarking quantum tomography methods. https://github.com/PQCLab/pyQTB. Accessed 30 Dec 2020

  42. Ahn, D., Teo, Y.S., Jeong, H., Bouchard, F., Hufnagel, F., Karimi, E., Koutnỳ, D., Řeháček, J., Hradil, Z., Leuchs, G., et al.: Adaptive compressive tomography with no a priori information. Physical Review Letters 122(10), 100404 (2019)

    Article  ADS  Google Scholar 

  43. Goyeneche, D., Cañas, G., Etcheverry, S., Gómez, E., Xavier, G., Lima, G., Delgado, A.: Five measurement bases determine pure quantum states on any dimension. Phys. Rev. Lett. 115(9), 090401 (2015)

  44. Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14(5), 447 (2018)

    Article  Google Scholar 

  45. Fastovets, D.V., Bogdanov, Yu.I., Bantysh, B.I., Lukichev, V.F.: Machine learning methods in quantum computing theory 11022, 110222S (2019)

  46. Bogdanov, Yu.I., Avosopyants, G.V., Belinskii, L.V., Katamadze, K.G., Kulik, S.P., Lukichev, V.F.: Statistical reconstruction of optical quantum states based on mutually complementary quadrature quantum measurements. JETP 123(2), 212 (2016)

    Article  ADS  Google Scholar 

  47. Bengtsson, I.: Three ways to look at mutually unbiased bases. In: AIP Conference Proceedings, vol. 889, pp. 40–51. AIP (2007)

  48. Adamson, R.B.A., Steinberg, A.M.: Improving quantum state estimation with mutually unbiased bases. Phys. Rev. Lett. 105(3), 030406 (2010)

  49. Chen, Y., Ye, X.: Projection onto a simplex (2011)

  50. Efficient Matlab routines for quantum tomography. https://github.com/qMLE/qMLE. Accessed 30 Dec 2020

  51. Kosut, R., Walmsley, I.A., Rabitz, H.: Optimal experiment design for quantum state and process tomography and Hamiltonian parameter estimation (2004)

  52. Cvx: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx. Accessed 30 Dec 2020

  53. Nielsen, M., Chuang, I.: The Advanced Theory of Statistics, Vol. 2: Inference and Relationship. Charles Griffin & Company Ltd. (1961)

  54. Matlab library for the root approach quantum tomography. https://github.com/PQCLab/mRootTomography. Accessed 30 Dec 2020

  55. Python library for the root approach quantum tomography. https://github.com/PQCLab/pyRootTomography. Accessed 30 Dec 2020

  56. Fazel, M., Hindi, H., Boyd, S.: Rank minimization and applications in system theory. In: Proceedings of the 2004 American Control Conference, pp. 3273–3278. IEEE (2004)

  57. Steffens, A., Riofrío, C., McCutcheon, W., Roth, I., Bell, B.A., McMillan, A., Tame, M., Rarity, J., Eisert, J.: Experimentally exploring compressed sensing quantum tomography. Quantum Sci. Technol. 2(2), 025005 (2017)

  58. Ferrie, C.: Self-guided quantum tomography. Phys. Rev. Lett. 113(19), 190404 (2014)

  59. Chapman, R.J., Ferrie, C., Peruzzo, A.: Experimental demonstration of self-guided quantum tomography. Phys. Rev. Lett. 117(4), 040402 (2016)

  60. Wu, X., Xu, K.: Partial standard quantum process tomography. Quantum Inf. Process. 12(2), 1379 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  61. Knee, G.C., Bolduc, E., Leach, J., Gauger, E.M.: Quantum process tomography via completely positive and trace-preserving projection. Phys. Rev. A 98(6), 062336 (2018)

  62. Bantysh, B.I., Fastovets, D.V., Bogdanov, Yu.I.: MATLAB library for the root approach quantum tomography 11022, 110222N (2019)

  63. Huang, W., Yang, C.H., Chan, K.W., Tanttu, T., Hensen, B., Leon, R.C.C., Fogarty, M.A., Hwang, J.C.C., Hudson, F.E., Itoh, K.M., et al.: Fidelity benchmarks for two-qubit gates in silicon. Nature 569(7757), 532 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to G.I. Struchalin for help in carrying out the computations, to Dr. D.O. Sinitsyn for valuable advice and comments and to all the experimenters who helped us in developing the set of tests.

Funding

This work was supported by Program of the Ministry of Science and Higher Education of Russia (No. 0066-2019-0005) for Valiev Institute of Physics and Technology of RAS and by Theoretical Physics and Mathematics Advancement Foundation “BASIS” (Grant No. 20-1-1-34-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Bantysh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

Data are available from the authors on reasonable request.

Code availability

The software for benchmarking QT methods is available at [40, 41].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 261 KB)

Supplementary material 2 (pdf 227 KB)

Appendix: Equivalence between random unitary error and depolarization

Appendix: Equivalence between random unitary error and depolarization

Let us show the validity of (8) for the state \(|0\rangle \). (Due to the unitary invariance of the distribution of random states \(|g\rangle \), the proof for any state \(|\varphi \rangle =U_\varphi |0\rangle \) with some unitary operator \(U_\varphi \) is carried out in a similar way.)

Theorem 1

Let the action of a random unitary operator \(W_{g,a}\) on the state \(|0\rangle \) in a Hilbert space of dimension d be given by the expression

$$\begin{aligned} W_{g,a}|0\rangle = a|0\rangle + \sqrt{1-a^2}\frac{|g\rangle -g_0|0\rangle }{\sqrt{1-|g_0 |^2}}, \end{aligned}$$

where a is a fixed non-negative parameter and \(g_0=\langle {0}|{g}\rangle \). If vectors \(|g\rangle \) are uniformly distributed according to the Haar measure, then the following equality holds

$$\begin{aligned} \int {W_{g,a} |{0}\rangle \langle {0}| W_{g,a}^\dagger dg} = (1-p_a)|{0}\rangle \langle {0}| + p_aI_d/d, \end{aligned}$$

where \(p_a = \frac{d}{d-1}(1-a^2)\).

Proof

The matrix representation of the vector \(W_{g,a}|0\rangle \) in the computational basis has the form \(\left( a \ \, \sqrt{1-a^2}\tilde{\mathbf {g}}^T\right) ^T\), where the column vector \(\tilde{\mathbf {g}}\) specifies the amplitudes of a uniformly distributed random vector (according to the Haar measure) in the space of dimension \(d-1\). The corresponding density matrix has the form

$$\begin{aligned} \begin{pmatrix} a^2 &{} \quad &{} a\sqrt{1-a^2}\tilde{\mathbf {g}}^\dagger \\ a\sqrt{1-a^2}\tilde{\mathbf {g}} &{} \quad &{} (1-a^2)\tilde{\mathbf {g}}\tilde{\mathbf {g}}^\dagger \end{pmatrix}. \end{aligned}$$

Since the amplitudes of the vector \(\tilde{\mathbf {g}}\) are given by normalized complex random variables with standard normal distribution, the expected value of \(\tilde{\mathbf {g}}\) is equal to the zero vector. Moreover, the averaging over \(\tilde{\mathbf {g}}\tilde{\mathbf {g}}^\dagger \) is proportional to the identity matrix. Thus,

$$\begin{aligned} \int {W_{g,a} |{0}\rangle \langle {0}| W_{g,a}^\dagger dg} = \int {\begin{pmatrix} a^2 &{} \quad &{} a\sqrt{1-a^2}\tilde{\mathbf {g}}^\dagger \\ a\sqrt{1-a^2}\tilde{\mathbf {g}} &{} \quad &{} (1-a^2)\tilde{\mathbf {g}}\tilde{\mathbf {g}}^\dagger \end{pmatrix}d\tilde{g}} = \begin{pmatrix} a^2 &{} \quad &{} {\mathbf {0}}^T \\ {\mathbf {0}} &{} \quad &{} \frac{1-a^2}{d-1}{\mathbf {I}}_{d-1} \end{pmatrix}. \end{aligned}$$

\(\square \)

In our case, \(a=1-\xi ^2/2\), where \(\xi \sim \text {norm}(0, \sigma )\), in which \(\sigma \) is a small parameter characterizing the error level (\(\sigma \) should be small enough to make a positive almost certainly). Having calculated the expected value \({p = \langle p_a \rangle _\xi = \frac{d}{d-1}(\sigma ^2 - \frac{3}{4} \sigma ^4)}\), we obtain equality (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bantysh, B.I., Chernyavskiy, A.Y. & Bogdanov, Y.I. Quantum tomography benchmarking. Quantum Inf Process 20, 339 (2021). https://doi.org/10.1007/s11128-021-03285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03285-9

Keywords

Navigation