Skip to main content
Log in

Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum computing is a game-changing technology for global academia, research centers and industries including computational science, mathematics, finance, pharmaceutical, materials science, chemistry and cryptography. Although it has seen a major boost in the last decade, we are still a long way from reaching the maturity of a full-fledged quantum computer. That said, we will be in the noisy-intermediate scale quantum (NISQ) era for a long time, working on dozens or even thousands of qubits quantum computing systems. An outstanding challenge, then, is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise. To address this challenge, several near-term quantum computing techniques, including variational quantum algorithms, error mitigation, quantum circuit compilation and benchmarking protocols, have been proposed to characterize and mitigate errors, and to implement algorithms with a certain resistance to noise, so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications. Besides, the development of near-term quantum devices is inseparable from the efficient classical simulation, which plays a vital role in quantum algorithm design and verification, error-tolerant verification and other applications. This review will provide a thorough introduction of these near-term quantum computing techniques, report on their progress, and finally discuss the future prospect of these techniques, which we hope will motivate researchers to undertake additional studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen, I. Chuang, and L. K. Grover, Am. J. Phys. 70, 558 (2002).

    ADS  Google Scholar 

  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464, 45 (2010), arXiv: 1009.2267.

    ADS  Google Scholar 

  3. P. W. Shor, SIAM Rev. 41, 303 (1999).

    ADS  MathSciNet  Google Scholar 

  4. L. K. Grover, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, New York, 1996), pp. 212–219.

    Google Scholar 

  5. H. L. Huang, D. Wu, D. Fan, and X. Zhu, Sci. China Inf. Sci. 63, 180501 (2020).

    Google Scholar 

  6. J. Preskill, Quantum 2, 79 (2018), arXiv: 1801.00862.

    Google Scholar 

  7. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrá, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Nature 574, 505 (2019), arXiv: 1910.11333.

    ADS  Google Scholar 

  8. Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen, X. Chen, T. H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H. L. Huang, Y. H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, Q. Zhu, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Phys. Rev. Lett. 127, 180501 (2021), arXiv: 2106.14734.

    ADS  Google Scholar 

  9. Q. Zhu, S. Cao, F. Chen, M. C. Chen, X. Chen, T. H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H. L. Huang, Y. H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Sci. Bull. 67, 240 (2022), arXiv: 2109.03494.

    Google Scholar 

  10. H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Science 370, 1460 (2020), arXiv: 2012.01625.

    ADS  Google Scholar 

  11. H. S. Zhong, Y. H. Deng, J. Qin, H. Wang, M. C. Chen, L. C. Peng, Y. H. Luo, D. Wu, S. Q. Gong, H. Su, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, J. J. Renema, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 127, 180502 (2021), arXiv: 2106.15534.

    ADS  Google Scholar 

  12. L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand, Z. Vernon, N. Quesada, and J. Lavoie, Nature 606, 75 (2022).

    ADS  Google Scholar 

  13. P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Appl. Phys. Rev. 6, 021318 (2019), arXiv: 1904.06560.

    ADS  Google Scholar 

  14. M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I. J. Wang, S. Gustavsson, and W. D. Oliver, Annu. Rev. Condens. Matter Phys. 11, 369 (2020), arXiv: 1905.13641.

    ADS  Google Scholar 

  15. H. Haffner, C. Roos, and R. Blatt, Phys. Rep. 469, 155 (2008), arXiv: 0809.4368.

    ADS  MathSciNet  Google Scholar 

  16. C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, Appl. Phys. Rev. 6, 021314 (2019), arXiv: 1904.04178.

    ADS  Google Scholar 

  17. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Nat. Photon. 14, 273 (2020), arXiv: 2005.01948.

    ADS  Google Scholar 

  18. S. Slussarenko, and G. J. Pryde, Appl. Phys. Rev. 6, 041303 (2019), arXiv: 1907.06331.

    ADS  Google Scholar 

  19. F. Flamini, N. Spagnolo, and F. Sciarrino, Rep. Prog. Phys. 82, 016001 (2018), arXiv: 1803.02790.

    ADS  Google Scholar 

  20. P. W. Shor, in Proceedings of 37th Conference on Foundations of Computer Science (IEEE, New York, 1996), pp. 56–65.

    Google Scholar 

  21. Y. Zhao, Y. Ye, H. L. Huang, Y. Zhang, D. Wu, H. Guan, Q. Zhu, Z. Wei, T. He, S. Cao, F. Chen, T. H. Chung, H. Deng, D. Fan, M. Gong, C. Guo, S. Guo, L. Han, N. Li, S. Li, Y. Li, F. Liang, J. Lin, H. Qian, H. Rong, H. Su, L. Sun, S. Wang, Y. Wu, Y. Xu, C. Ying, J. Yu, C. Zha, K. Zhang, Y. H. Huo, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Phys. Rev. Lett. 129, 030501 (2022), arXiv: 2112.13505.

    ADS  Google Scholar 

  22. S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Müller, A. Blais, C. Eichler, and A. Wallraff, Nature 605, 669 (2022), arXiv: 2112.03708.

    ADS  Google Scholar 

  23. H. L. Huang, M. Narozniak, F. Liang, Y. Zhao, A. D. Castellano, M. Gong, Y. Wu, S. Wang, J. Lin, Y. Xu, H. Deng, H. Rong, J. P. Dowling, C. Z. Peng, T. Byrnes, X. Zhu, and J. W. Pan, Phys. Rev. Lett. 126, 090502 (2021), arXiv: 2009.07590.

    ADS  Google Scholar 

  24. C. Liu, H. L. Huang, C. Chen, B. Y. Wang, X. L. Wang, T. Yang, L. Li, N. L. Liu, J. P. Dowling, T. Byrnes, C. Y. Lu, and J. W. Pan, Optica 6, 264 (2019).

    ADS  Google Scholar 

  25. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature 549, 195 (2017), arXiv: 1611.09347.

    ADS  Google Scholar 

  26. A. Broadbent, J. Fitzsimons, and E. Kashefi, in 2009 50th Annual IEEE Symposium on Foundations of Computer Science (IEEE, New York, 2009), pp. 517–526.

    Google Scholar 

  27. H. L. Huang, Q. Zhao, X. Ma, C. Liu, Z. E. Su, X. L. Wang, L. Li, N. L. Liu, B. C. Sanders, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 119, 050503 (2017), arXiv: 1707.00400.

    ADS  Google Scholar 

  28. H. L. Huang, Y. W. Zhao, T. Li, F. G. Li, Y. T. Du, X. Q. Fu, S. Zhang, X. Wang, and W. S. Bao, Front. Phys. 12, 120305 (2017), arXiv: 1612.02886.

    ADS  Google Scholar 

  29. H. L. Huang, W. S. Bao, T. Li, F. G. Li, X. Q. Fu, S. Zhang, H. L. Zhang, and X. Wang, Quantum Inf. Process. 16, 199 (2017).

    ADS  Google Scholar 

  30. S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Science 335, 303 (2012), arXiv: 1110.1381.

    ADS  MathSciNet  Google Scholar 

  31. Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, and A. Aspuru-Guzik, Chem. Rev. 119, 10856 (2019).

    Google Scholar 

  32. P. Coleman, Introduction to Many-body Physics (Cambridge University Press, Cambridge, 2015).

    MATH  Google Scholar 

  33. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Nat. Rev. Phys. 3, 625 (2021).

    Google Scholar 

  34. K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W. K. Mok, S. Sim, L. C. Kwek, and A. Aspuru-Guzik, Rev. Mod. Phys. 94, 015004 (2022), arXiv: 2101.08448.

    ADS  Google Scholar 

  35. Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O’Brien, arXiv: 2210.00921.

  36. A. Botea, A. Kishimoto, and R. Marinescu, in Eleventh Annual Symposium on Combinatorial Search (Advancement of Artificial Intelligence, New York, 2018).

    Google Scholar 

  37. D. Venturelli, M. Do, B. Ogorman, J. Frank, E. Rieffel, K. E. Booth, T. Nguyen, P. Narayan, and S. Nanda, SPARK 2019, 95 (2019).

    Google Scholar 

  38. J. Kusyk, S. M. Saeed, and M. U. Uyar, IEEE Trans. Quantum Eng. 2, 2501616 (2021).

    Google Scholar 

  39. J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, Nat. Rev. Phys. 2, 382 (2020), arXiv: 1910.06343.

    Google Scholar 

  40. E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, Phys. Rev. A 77, 012307 (2008), arXiv: 0707.0963.

    ADS  Google Scholar 

  41. C. Guo, Y. Liu, M. Xiong, S. Xue, X. Fu, A. Huang, X. Qiang, P. Xu, J. Liu, S. Zheng, H. L. Huang, M. Deng, D. Poletti, W. S. Bao, and J. Wu, Phys. Rev. Lett. 123, 190501 (2019), arXiv: 1905.08394.

    ADS  Google Scholar 

  42. C. Guo, Y. Zhao, and H. L. Huang, Phys. Rev. Lett. 126, 070502 (2021), arXiv: 2011.02621.

    ADS  Google Scholar 

  43. Y. Liu, X. Liu, F. Li, H. Fu, Y. Yang, J. Song, P. Zhao, Z. Wang, D. Peng, H. Chen, C. Guo, H. L. Huang, W. Z. Wu, and D. X. Chen, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (IEEE, New York, 2021), pp. 1–12.

    Google Scholar 

  44. F. Pan, and P. Zhang, Phys. Rev. Lett. 128, 030501 (2022).

    ADS  Google Scholar 

  45. F. Pan, K. Chen, and P. Zhang, Phys. Rev. Lett. 129, 090502 (2022), arXiv: 2111.03011.

    ADS  Google Scholar 

  46. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Nature 549, 242 (2017), arXiv: 1704.05018.

    ADS  Google Scholar 

  47. F. Arute, et al. (Google AI Quantum And Collaborators), Science 369, 1084 (2020), arXiv: 2004.04174.

    MathSciNet  Google Scholar 

  48. I. Cong, S. Choi, and M. D. Lukin, Nat. Phys. 15, 1273 (2019), arXiv: 1810.03787.

    Google Scholar 

  49. V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Nature 567, 209 (2019), arXiv: 1804.11326.

    ADS  Google Scholar 

  50. J. Liu, K. H. Lim, K. L. Wood, W. Huang, C. Guo, and H.-L. Huang, Sci. China-Phys. Mech. Astron. 64, 290311 (2021).

    ADS  Google Scholar 

  51. H. L. Huang, X. L. Wang, P. P. Rohde, Y. H. Luo, Y. W. Zhao, C. Liu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Optica 5, 193 (2018), arXiv: 1801.06316.

    ADS  Google Scholar 

  52. S. Lloyd, and C. Weedbrook, Phys. Rev. Lett. 121, 040502 (2018), arXiv: 1804.09139.

    ADS  MathSciNet  Google Scholar 

  53. H. L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li, F. Liang, J. Lin, Y. Xu, R. Yang, T. Liu, M. H. Hsieh, H. Deng, H. Rong, C. Z. Peng, C. Y. Lu, Y. A. Chen, D. Tao, X. Zhu, and J. W. Pan, Phys. Rev. Appl. 16, 024051 (2021), arXiv: 2010.06201.

    ADS  Google Scholar 

  54. M. S. Rudolph, N. B. Toussaint, A. Katabarwa, S. Johri, B. Peropadre, and A. Perdomo-Ortiz, Phys. Rev. X 12, 031010 (2022).

    Google Scholar 

  55. S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein, G. Semeghini, A. Omran, J. G. Liu, R. Samajdar, X. Z. Luo, B. Nash, X. Gao, B. Barak, E. Farhi, S. Sachdev, N. Gemelke, L. Zhou, S. Choi, H. Pichler, S. T. Wang, M. Greiner, V. Vuletić, and M. D. Lukin, Science 376, 1209 (2022), arXiv: 2202.09372.

    ADS  Google Scholar 

  56. M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute, K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S. Boixo, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, Y. Chen, Z. Chen, Z. Ben Chiaro, R. Collins, W. Courtney, S. Demura, A. Dunsworth, D. Eppens, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, S. Habegger, A. Ho, S. Hong, T. Huang, L. B. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lindmark, M. Leib, O. Martin, J. M. Martinis, J. R. McClean, M. McEwen, A. Megrant, X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O. Naaman, C. Neill, F. Neukart, M. Y. Niu, T. E. O’Brien, B. O’Gorman, E. Ostby, A. Petukhov, H. Putterman, C. Quintana, P. Roushan, N. C. Rubin, D. Sank, A. Skolik, V. Smelyanskiy, D. Strain, M. Streif, M. Szalay, A. Vainsencher, T. White, Z. J. Yao, P. Yeh, A. Zalcman, L. Zhou, H. Neven, D. Bacon, E. Lucero, E. Farhi, and R. Babbush, Nat. Phys. 17, 332 (2021), arXiv: 2004.04197.

    Google Scholar 

  57. L. Zhou, S. T. Wang, S. Choi, H. Pichler, and M. D. Lukin, Phys. Rev. X 10, 021067 (2020).

    Google Scholar 

  58. M. Gong, H.-L. Huang, S. Wang, C. Guo, S. Li, Y. Wu, Q. Zhu, Y. Zhao, S. Guo, H. Qian, Y. S. Ye, C. Zha, F. S. Chen, C. Ying, J. L. Yu, D. J. Fan, D. C. Wu, H. Su, H. Deng, H. Rong, K. L. Zhang, S. R. Cao, J. Lin, Y. Xu, L. H. Sun, C. Guo, N. Li, F. T. Liang, A. Sakurai, K. Nemoto, W. J. Munro, Y.-H. Huo, C.-Y. Lu, C.-Z. Peng, X. B. Zhu, and J.-W. Pan, arXiv: 2201.05957.

  59. C. Ding, X.-Y. Xu, Y.-F. Niu, S. Zhang, W.-S. Bao, and H.-L. Huang, arXiv: 2208.02104.

  60. Y. Liu, D. Wang, S. Xue, A. Huang, X. Fu, X. Qiang, P. Xu, H. L. Huang, M. Deng, C. Guo, X. Yang, and J. Wu, Phys. Rev. A 101, 052316 (2020), arXiv: 1912.07286.

    ADS  Google Scholar 

  61. S. Xue, Y. Liu, Y. Wang, P. Zhu, C. Guo, and J. Wu, Phys. Rev. A 105, 032427 (2022), arXiv: 2108.02351.

    ADS  Google Scholar 

  62. J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, New J. Phys. 18, 023023 (2016), arXiv: 1509.04279.

    ADS  Google Scholar 

  63. M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Nat. Commun. 12, 1791 (2021), arXiv: 2001.00550.

    ADS  Google Scholar 

  64. Z. Liu, L.-W. Yu, L.-M. Duan, and D.-L. Deng, arXiv: 2108.08312.

  65. E. Farhi, J. Goldstone, and S. Gutmann, arXiv: 1411.4028.

  66. A. G. Taube, and R. J. Bartlett, Int. J. Quantum Chem. 106, 3393 (2006).

    ADS  Google Scholar 

  67. A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. ÓBrien, Nat. Commun. 5, 4213 (2014), arXiv: 1304.3061.

    ADS  Google Scholar 

  68. J. Lee, W. J. Huggins, M. Head-Gordon, and K. B. Whaley, J. Chem. Theor. Comput. 15, 311 (2019).

    Google Scholar 

  69. W. Mizukami, K. Mitarai, Y. O. Nakagawa, T. Yamamoto, T. Yan, and Y. Ohnishi, Phys. Rev. Res. 2, 033421 (2020).

    Google Scholar 

  70. M. Metcalf, N. P. Bauman, K. Kowalski, and W. A. de Jong, J. Chem. Theor. Comput. 16, 6165 (2020).

    Google Scholar 

  71. D. A. Fedorov, B. Peng, N. Govind, and Y. Alexeev, Mater. Theor. 6, 2 (2022), arXiv: 2103.08505.

    ADS  Google Scholar 

  72. H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, Nat. Commun. 10, 3007 (2019), arXiv: 1812.11173.

    ADS  Google Scholar 

  73. H. L. Tang, V. O. Shkolnikov, G. S. Barron, H. R. Grimsley, N. J. Mayhall, E. Barnes, and S. E. Economou, PRX Quantum 2, 020310 (2021), arXiv: 1911.10205.

    ADS  Google Scholar 

  74. L. Zhu, H. L. Tang, G. S. Barron, F. A. Calderon-Vargas, N. J. Mayhall, E. Barnes, and S. E. Economou, Phys. Rev. Res. 4, 033029 (2022).

    Google Scholar 

  75. Y. X. Yao, N. Gomes, F. Zhang, C. Z. Wang, K. M. Ho, T. Iadecola, and P. P. Orth, PRX Quantum 2, 030307 (2021), arXiv: 2011.00622.

    ADS  Google Scholar 

  76. Z. J. Zhang, T. H. Kyaw, J. S. Kottmann, M. Degroote, and A. Aspuru-Guzik, Quantum Sci. Technol. 6, 035001 (2021).

    Google Scholar 

  77. D. Claudino, J. Wright, A. J. McCaskey, and T. S. Humble, Front. Chem. 8, 1152 (2020), arXiv: 2011.01279.

    ADS  Google Scholar 

  78. J. Liu, Z. Li, and J. Yang, J. Chem. Phys. 154, 244112 (2021), arXiv: 2012.07047.

    ADS  Google Scholar 

  79. S. X. Zhang, C. Y. Hsieh, S. Zhang, and H. Yao, Quantum Sci. Technol. 7, 045023 (2022), arXiv: 2010.08561.

    ADS  Google Scholar 

  80. S. X. Zhang, C. Y. Hsieh, S. Zhang, and H. Yao, Mach. Learn.-Sci. Technol. 2, 045027 (2021), arXiv: 2103.06524.

    ADS  Google Scholar 

  81. L. Funcke, T. Hartung, K. Jansen, S. Kühn, M. Schneider, and P. Stornati, arXiv: 2111.11489.

  82. J. Li, X. Yang, X. Peng, and C. P. Sun, Phys. Rev. Lett. 118, 150503 (2017), arXiv: 1608.00677.

    ADS  Google Scholar 

  83. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Phys. Rev. A 98, 032309 (2018), arXiv: 1803.00745.

    ADS  Google Scholar 

  84. M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, Phys. Rev. A 99, 032331 (2019), arXiv: 1811.11184.

    ADS  Google Scholar 

  85. L. Banchi, and G. E. Crooks, Quantum 5, 386 (2021), arXiv: 2005.10299.

    Google Scholar 

  86. D. Wierichs, J. Izaac, C. Wang, and C. Y. Y. Lin, Quantum 6, 677 (2022), arXiv: 2107.12390.

    Google Scholar 

  87. K. Li, S. Wei, P. Gao, F. Zhang, Z. Zhou, T. Xin, X. Wang, P. Rebentrost, and G. Long, npj Quantum Inf. 7, 16 (2021).

    ADS  Google Scholar 

  88. J. Stokes, J. Izaac, N. Killoran, and G. Carleo, Quantum 4, 269 (2020), arXiv: 1909.02108.

    Google Scholar 

  89. N. Yamamoto, arXiv: 1909.05074.

  90. D. Wierichs, C. Gogolin, and M. Kastoryano, Phys. Rev. Res. 2, 043246 (2020), arXiv: 2004.14666.

    Google Scholar 

  91. B. Koczor, and S. C. Benjamin, arXiv: 1912.08660.

  92. T. Jones, arXiv: 2011.02991.

  93. P. Rebentrost, M. Schuld, L. Wossnig, F. Petruccione, and S. Lloyd, New J. Phys. 21, 073023 (2019).

    ADS  MathSciNet  Google Scholar 

  94. B. Koczor, and S. C. Benjamin, Phys. Rev. Res. 4, 023017 (2022), arXiv: 2008.13774.

    Google Scholar 

  95. A. W. Harrow, and J. C. Napp, Phys. Rev. Lett. 126, 140502 (2021).

    ADS  Google Scholar 

  96. R. Sweke, F. Wilde, J. Meyer, M. Schuld, P. K. Faehrmann, B. Meynard-Piganeau, and J. Eisert, Quantum 4, 314 (2020), arXiv: 1910.01155.

    Google Scholar 

  97. A. Anand, M. Degroote, and A. Aspuru-Guzik, Mach. Learn.-Sci. Technol. 2, 045012 (2021).

    Google Scholar 

  98. T. Zhao, G. Carleo, J. Stokes, and S. Veerapaneni, Mach. Learn.- Sci. Technol. 2, 02LT01 (2020).

    Google Scholar 

  99. S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash, arXiv: 1911.04574.

  100. M. M. Wauters, E. Panizon, G. B. Mbeng, and G. E. Santoro, Phys. Rev. Res. 2, 033446 (2020).

    Google Scholar 

  101. J. Yao, M. Bukov, and L. Lin, in Mathematical and Scientific Machine Learning (Proceedings of Machine Learning Research, New York, 2020), pp. 605–634.

    Google Scholar 

  102. J. Rayleigh, Phil. Trans. 161, 16 (1870).

    Google Scholar 

  103. W. Ritz, crll 1909, 1 (1909).

    Google Scholar 

  104. S. H. Gould, in Variational Methods for Eigenvalue Problems: An Introduction to the Methods of Rayleigh, Ritz, Weinstein, and Aronszajn (Courier Corporation, Chicago, 1966).

    MATH  Google Scholar 

  105. J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, and W. A. de Jong, Phys. Rev. A 95, 042308 (2017), arXiv: 1603.05681.

    ADS  Google Scholar 

  106. K. M. Nakanishi, K. Mitarai, and K. Fujii, Phys. Rev. Res. 1, 033062 (2019), arXiv: 1810.09434.

    Google Scholar 

  107. O. Higgott, D. Wang, and S. Brierley, Quantum 3, 156 (2019), arXiv: 1805.08138.

    Google Scholar 

  108. R. M. Parrish, E. G. Hohenstein, P. L. McMahon, and T. J. Martínez, Phys. Rev. Lett. 122, 230401 (2019), arXiv: 1901.01234.

    ADS  Google Scholar 

  109. T. Jones, S. Endo, S. McArdle, X. Yuan, and S. C. Benjamin, Phys. Rev. A 99, 062304 (2019).

    ADS  Google Scholar 

  110. F. Zhang, N. Gomes, Y. Yao, P. P. Orth, and T. Iadecola, Phys. Rev. B 104, 075159 (2021), arXiv: 2104.12636.

    ADS  Google Scholar 

  111. J. Tilly, G. Jones, H. Chen, L. Wossnig, and E. Grant, Phys. Rev. A 102, 062425 (2020), arXiv: 2001.04941.

    ADS  Google Scholar 

  112. N. Yoshioka, Y. O. Nakagawa, K. Mitarai, and K. Fujii, Phys. Rev. Res. 2, 043289 (2020), arXiv: 1908.09836.

    Google Scholar 

  113. S. Endo, I. Kurata, and Y. O. Nakagawa, Phys. Rev. Res. 2, 033281 (2020), arXiv: 1909.12250.

    Google Scholar 

  114. J. M. Kreula, S. R. Clark, and D. Jaksch, Sci. Rep. 6, 32940 (2016), arXiv: 1510.05703.

    ADS  Google Scholar 

  115. K. Mitarai, Y. O. Nakagawa, and W. Mizukami, Phys. Rev. Res. 2, 013129 (2020), arXiv: 1905.04054.

    Google Scholar 

  116. R. M. Parrish, E. G. Hohenstein, P. L. McMahon, and T. J. Martinez, arXiv: 1906.08728.

  117. T. E. O’Brien, B. Senjean, R. Sagastizabal, X. Bonet-Monroig, A. Dutkiewicz, F. Buda, L. DiCarlo, and L. Visscher, npj Quantum Inf. 5, 113 (2019), arXiv: 1905.03742.

    ADS  Google Scholar 

  118. S. Wei, H. Li, and G. L. Long, Research 2020, 1486935 (2020).

    ADS  Google Scholar 

  119. J. Zhang, R. Ferguson, S. Kühn, J. F. Haase, C. Wilson, K. Jansen, and C. A. Muschik, arXiv: 2108.08248.

  120. A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta, Nature 567, 491 (2019), arXiv: 1805.04492.

    ADS  Google Scholar 

  121. J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and I. Siddiqi, Phys. Rev. X 8, 011021 (2018).

    Google Scholar 

  122. A. Montanaro, and S. Stanisic, arXiv: 2006.01179.

  123. M. C. Chen, M. Gong, X. Xu, X. Yuan, J. W. Wang, C. Wang, C. Ying, J. Lin, Y. Xu, Y. Wu, S. Wang, H. Deng, F. Liang, C. Z. Peng, S. C. Benjamin, X. Zhu, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 125, 180501 (2020), arXiv: 1905.03150.

    ADS  Google Scholar 

  124. R. N. Tazhigulov, S.-N. Sun, R. Haghshenas, H. Zhai, A. T. Tan, N. C. Rubin, R. Babbush, A. J. Minnich, and G. K. Chan, arXiv: 2203.15291.

  125. W. J. Huggins, B. A. O’Gorman, N. C. Rubin, D. R. Reichman, R. Babbush, and J. Lee, Nature 603, 416 (2022), arXiv: 2106.16235.

    ADS  Google Scholar 

  126. D. Lee, J. Lee, S. Hong, H. T. Lim, Y. W. Cho, S. W. Han, H. Shin, J. ur Rehman, and Y. S. Kim, Optica 9, 88 (2022), arXiv: 2109.14244.

    ADS  Google Scholar 

  127. C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush, A. Aspuru-Guzik, R. Blatt, and C. F. Roos, Phys. Rev. X 8, 031022 (2018), arXiv: 1803.10238.

    Google Scholar 

  128. Y. Nam, J. S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R. Brown, S. Allen, J. M. Amini, J. Apisdorf, K. M. Beck, A. Blinov, V. Chaplin, M. Chmielewski, C. Collins, S. Debnath, K. M. Hudek, A. M. Ducore, M. Keesan, S. M. Kreikemeier, J. Mizrahi, P. Solomon, M. Williams, J. D. Wong-Campos, D. Moehring, C. Monroe, and J. Kim, npj Quantum Inf. 6, 33 (2020), arXiv: 1902.10171.

    ADS  Google Scholar 

  129. J. N. Zhang, I. Arrazola, J. Casanova, L. Lamata, K. Kim, and E. Solano, Phys. Rev. A 101, 052333 (2020).

    ADS  Google Scholar 

  130. S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme, arXiv: 1701.08213.

  131. K. Setia, R. Chen, J. E. Rice, A. Mezzacapo, M. Pistoia, and J. D. Whitfield, J. Chem. Theor. Comput. 16, 6091 (2020).

    Google Scholar 

  132. J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-Guzik, Quantum Sci. Technol. 4, 014008 (2018).

    ADS  Google Scholar 

  133. T. Takeshita, N. C. Rubin, Z. Jiang, E. Lee, R. Babbush, and J. R. McClean, Phys. Rev. X 10, 011004 (2020), arXiv: 1902.10679.

    Google Scholar 

  134. J. G. Liu, Y. H. Zhang, Y. Wan, and L. Wang, Phys. Rev. Res. 1, 023025 (2019), arXiv: 1902.02663.

    Google Scholar 

  135. K. Fujii, K. Mizuta, H. Ueda, K. Mitarai, W. Mizukami, and Y. O. Nakagawa, PRX Quantum 3, 010346 (2022).

    ADS  Google Scholar 

  136. Y. Zhang, L. Cincio, C. F. Negre, P. Czarnik, P. J. Coles, P. M. Anisimov, S. M. Mniszewski, S. Tretiak, and P. A. Dub, npj Quantum Inf. 8, 96 (2022).

    ADS  Google Scholar 

  137. N. V. Tkachenko, J. Sud, Y. Zhang, S. Tretiak, P. M. Anisimov, A. T. Arrasmith, P. J. Coles, L. Cincio, and P. A. Dub, PRX Quantum 2, 020337 (2021), arXiv: 2009.04996.

    ADS  Google Scholar 

  138. K. Mitarai, T. Yan, and K. Fujii, Phys. Rev. Appl. 11, 044087 (2019), arXiv: 1810.04482.

    ADS  Google Scholar 

  139. Y. Fan, C. Cao, X. Xu, Z. Li, D. Lv, and M.-H. Yung, arXiv: 2106.15210.

  140. S. X. Zhang, Z. Q. Wan, C. K. Lee, C. Y. Hsieh, S. Zhang, and H. Yao, Phys. Rev. Lett. 128, 120502 (2022), arXiv: 2106.05105.

    ADS  Google Scholar 

  141. S. Endo, S. C. Benjamin, and Y. Li, Phys. Rev. X 8, 031027 (2018), arXiv: 1712.09271.

    Google Scholar 

  142. S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, J. Phys. Soc. Jpn. 90, 032001 (2021), arXiv: 2011.01382.

    ADS  Google Scholar 

  143. E. Rosenberg, P. Ginsparg, and P. L. McMahon, Quantum Sci. Technol. 7, 015024 (2022), arXiv: 2106.01264.

    ADS  Google Scholar 

  144. D. Wang, O. Higgott, and S. Brierley, Phys. Rev. Lett. 122, 140504 (2019), arXiv: 1802.00171.

    ADS  Google Scholar 

  145. R. R. Ferguson, L. Dellantonio, A. A. Balushi, K. Jansen, W. Dür, and C. A. Muschik, Phys. Rev. Lett. 126, 220501 (2021), arXiv: 2010.13940.

    ADS  Google Scholar 

  146. S. Hadfield, Z. Wang, B. O’Gorman, E. Rieffel, D. Venturelli, and R. Biswas, Algorithms 12, 34 (2019).

    Google Scholar 

  147. J. Håastad, J. ACM 48, 798 (2001).

    MathSciNet  Google Scholar 

  148. C. Moussa, H. Calandra, and V. Dunjko, Quantum Sci. Technol. 5, 044009 (2020), arXiv: 2001.08271.

    ADS  Google Scholar 

  149. M. Streif, and M. Leib, arXiv: 1901.01903.

  150. G. G. Guerreschi, and A. Y. Matsuura, Sci. Rep. 9, 6903 (2019), arXiv: 1812.07589.

    ADS  Google Scholar 

  151. G. E. Crooks, arXiv: 1811.08419.

  152. A. M. Dalzell, A. W. Harrow, D. E. Koh, and R. L. La Placa, Quantum 4, 264 (2020).

    Google Scholar 

  153. S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, Quantum 6, 678 (2022).

    Google Scholar 

  154. D. J. Egger, J. Marecek, and S. Woerner, Quantum 5, 479 (2021), arXiv: 2009.10095.

    Google Scholar 

  155. S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, arXiv: 1910.08980.

  156. Z. C. Yang, A. Rahmani, A. Shabani, H. Neven, and C. Chamon, Phys. Rev. X 7, 021027 (2017), arXiv: 1607.06473.

    Google Scholar 

  157. D. Wecker, M. B. Hastings, and M. Troyer, Phys. Rev. A 94, 022309 (2016), arXiv: 1605.05370.

    ADS  Google Scholar 

  158. S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash, AAAI 34, 2367 (2020).

    Google Scholar 

  159. M. Cain, E. Farhi, S. Gutmann, D. Ranard, and E. Tang, arXiv: 2207.05089.

  160. B. Tan, and J. Cong, in 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (IEEE, New York, 2020), pp. 1–9.

    Google Scholar 

  161. Y. J. Patel, S. Jerbi, T. Bäck, and V. Dunjko, arXiv: 2207.06294.

  162. R. Majumdar, D. Madan, D. Bhoumik, D. Vinayagamurthy, S. Raghunathan, and S. Sur-Kolay, arXiv: 2106.02812.

  163. R. Herrman, L. Treffert, J. Ostrowski, P. C. Lotshaw, T. S. Humble, and G. Siopsis, Algorithms 14, 294 (2021).

    Google Scholar 

  164. R. Majumdar, D. Bhoumik, D. Madan, D. Vinayagamurthy, S. Raghunathan, and S. Sur-Kolay, arXiv: 2110.04637.

  165. Z. Zhou, Y. Du, X. Tian, and D. Tao, arXiv: 2205.11762.

  166. D. Amaro, C. Modica, M. Rosenkranz, M. Fiorentini, M. Benedetti, and M. Lubasch, Quantum Sci. Technol. 7, 015021 (2022), arXiv: 2106.10055.

    ADS  Google Scholar 

  167. A. Bengtsson, P. Vikstål, C. Warren, M. Svensson, X. Gu, A. F. Kockum, P. Krantz, C. Krizan, D. Shiri, I.-M. Svensson, G. Tancredi, G. Johansson, P. Delsing, G. Ferrini, and J. Bylander, arXiv: 1912.10495.

  168. Y. Zhu, Z. Zhang, B. Sundar, A. M. Green, C. H. Alderete, N. H. Nguyen, K. Hazzard, and N. M. Linke, Quantum Sci. Technol. 8, 015007 (2022).

    ADS  Google Scholar 

  169. A. Krizhevsky, I. Sutskever, G. E. Hinton, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Advances in Neural Information Processing Systems (MIT Press, Cambridge, 2012).

    Google Scholar 

  170. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, Int. J. Comput. Vis. 115, 211 (2015).

    MathSciNet  Google Scholar 

  171. K. Simonyan, and A. Zisserman, arXiv: 1409.1556.

  172. K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, New York, 2016), pp. 770–778.

    Google Scholar 

  173. Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, in Proceedings of the 34th International Conference on Machine Learning, edited by D. Precup, and Y. W. Teh (Proceedings of Machine Learning Research, New York, 2017), pp. 933–941.

  174. J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, in International Conference on Machine Learning (Proceedings of Machine Learning Research, New York, 2017), pp. 1243–1252.

    Google Scholar 

  175. Y. Zhang, and B. Wallace, arXiv: 1510.03820.

  176. A. Kirillov, D. Schlesinger, S. Zheng, B. Savchynskyy, P. H. Torr, and C. Rother, in Asian Conference on Computer Vision (Springer, Heidelberg, 2016), pp. 221–236.

    Google Scholar 

  177. S. Song, H. Huang, and T. Ruan, Multimed. Tools Appl. 78, 857 (2019).

    Google Scholar 

  178. A. W. Yu, D. Dohan, M.-T. Luong, R. Zhao, K. Chen, M. Norouzi, and Q. V. Le, arXiv: 1804.09541.

  179. A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger, and P. J. Coles, Phys. Rev. X 11, 041011 (2021), arXiv: 2011.02966.

    Google Scholar 

  180. J. Herrmann, S. M. Llima, A. Remm, P. Zapletal, N. A. McMahon, C. Scarato, F. Swiadek, C. K. Andersen, C. Hellings, S. Krinner, N. Lacroix, S. Lazar, M. Kerschbaum, D. C. Zanuz, G. J. Norris, M. J. Hartmann, A. Wallraff, and C. Eichler, Nat. Commun. 13, 4144 (2022), arXiv: 2109.05909.

    ADS  Google Scholar 

  181. G. L. Long, Commun. Theor. Phys. 45, 825 (2006), arXiv: quant-ph/0512120.

    ADS  Google Scholar 

  182. S. J. Wei, and G. L. Long, Quantum Inf. Process. 15, 1189 (2016), arXiv: 1507.03200.

    ADS  MathSciNet  Google Scholar 

  183. S. J. Wei, Y. H. Chen, Z. R. Zhou, and G. L. Long, AAPPS Bull. 32, 2 (2022).

    ADS  Google Scholar 

  184. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Commun. ACM 63, 139 (2020).

    Google Scholar 

  185. X. Gao, Z. Y. Zhang, and L. M. Duan, Sci. Adv. 4, eaat9004 (2018).

    ADS  Google Scholar 

  186. J. Romero, and A. Aspuru-Guzik, Adv. Quantum Tech. 4, 2000003 (2021).

    Google Scholar 

  187. H. Situ, Z. He, Y. Wang, L. Li, and S. Zheng, Inf. Sci. 538, 193 (2020).

    Google Scholar 

  188. P. L. Dallaire-Demers, and N. Killoran, Phys. Rev. A 98, 012324 (2018), arXiv: 1804.08641.

    ADS  Google Scholar 

  189. B. T. Kiani, G. De Palma, M. Marvian, Z.-W. Liu, and S. Lloyd, arXiv: 2101.03037.

  190. S. Chakrabarti, H. Yiming, T. Li, S. Feizi, and X. Wu, in Advances in Neural Information Processing Systems (NeurIPS, Montreal, 2019), pp. 6778–6789.

    Google Scholar 

  191. K. Bartkiewicz, P. Tulewicz, J. Roik, and K. Lemr, arXiv: 2112.13255.

  192. E. Y. Zhu, S. Johri, D. Bacon, M. Esencan, J. Kim, M. Muir, N. Murgai, J. Nguyen, N. Pisenti, A. Schouela, K. Sosnova, and K. Wright, arXiv: 2109.06315.

  193. M. Y. Niu, A. Zlokapa, M. Broughton, S. Boixo, M. Mohseni, V. Smelyanskyi, and H. Neven, Phys. Rev. Lett. 128, 220505 (2022).

    ADS  Google Scholar 

  194. P. Braccia, F. Caruso, and L. Banchi, New J. Phys. 23, 053024 (2021), arXiv: 2012.05996.

    ADS  Google Scholar 

  195. B. Coyle, M. Henderson, J. Chan Jin Le, N. Kumar, M. Paini, and E. Kashefi, Quantum Sci. Technol. 6, 024013 (2021), arXiv: 2008.00691.

    ADS  Google Scholar 

  196. M. Schuld, and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019).

    ADS  Google Scholar 

  197. D. Bondarenko, and P. Feldmann, Phys. Rev. Lett. 124, 130502 (2020), arXiv: 1910.09169.

    ADS  Google Scholar 

  198. C. Bravo-Prieto, Mach. Learn.-Sci. Technol. 2, 035028 (2021).

    Google Scholar 

  199. C. Cao, and X. Wang, Phys. Rev. Appl. 15, 054012 (2021), arXiv: 2012.08331.

    ADS  Google Scholar 

  200. D. F. Locher, L. Cardarelli, and M. Müller, arXiv: 2202.00555.

  201. M. Srikumar, C. D. Hill, and L. C. L. Hollenberg, Quantum Sci. Technol. 7, 015020 (2021), arXiv: 2107.11988.

    ADS  Google Scholar 

  202. Y. Du, and D. Tao, arXiv: 2106.15432.

  203. A. Pepper, N. Tischler, and G. J. Pryde, Phys. Rev. Lett. 122, 060501 (2019), arXiv: 1810.01637.

    ADS  Google Scholar 

  204. C. J. Huang, H. Ma, Q. Yin, J. F. Tang, D. Dong, C. Chen, G. Y. Xiang, C. F. Li, and G. C. Guo, Phys. Rev. A 102, 032412 (2020), arXiv: 1903.08699.

    ADS  Google Scholar 

  205. Y. Ding, L. Lamata, M. Sanz, X. Chen, and E. Solano, Adv. Quantum Tech. 2, 1800065 (2019).

    Google Scholar 

  206. E. R. Anschuetz, J. P. Olson, A. Aspuru-Guzik, and Y. Cao, arXiv: 1808.08927.

  207. A. H. Karamlou, W. A. Simon, A. Katabarwa, T. L. Scholten, B. Peropadre, and Y. Cao, npj Quantum Inf. 7, 156 (2021), arXiv: 2012.07825.

    ADS  Google Scholar 

  208. V. Phan, A. Pönni, M. Raasakka, and I. Tittonen, arXiv: 2208.07085.

  209. L. Qiu, M. Alam, A. Ash-Saki, and S. Ghosh, in Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (IEEE, New York, 2020), pp. 229–234.

    Google Scholar 

  210. Z. Wang, S. Wei, G. L. Long, and L. Hanzo, Sci. China Inf. Sci. 65, 200503 (2022).

    Google Scholar 

  211. B. Coyle, M. Doosti, E. Kashefi, and N. Kumar, Phys. Rev. A 105, 042604 (2022), arXiv: 2012.11424.

    ADS  Google Scholar 

  212. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009), arXiv: 0811.3171.

    ADS  MathSciNet  Google Scholar 

  213. C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, arXiv: 1909.05820.

  214. H.-Y. Huang, K. Bharti, and P. Rebentrost, arXiv: 1909.07344.

  215. X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan, Sci. Bull. 66, 2181 (2021), arXiv: 1909.03898.

    Google Scholar 

  216. M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch, Phys. Rev. A 101, 010301 (2020), arXiv: 1907.09032.

    ADS  Google Scholar 

  217. O. Kyriienko, A. E. Paine, and V. E. Elfving, Phys. Rev. A 103, 052416 (2021), arXiv: 2011.10395.

    ADS  Google Scholar 

  218. J. Joo, and H. Moon, arXiv: 2109.09216.

  219. K. Kubo, Y. O. Nakagawa, S. Endo, and S. Nagayama, Phys. Rev. A 103, 052425 (2021), arXiv: 2012.04429.

    ADS  Google Scholar 

  220. H. L. Liu, Y. S. Wu, L. C. Wan, S. J. Pan, S. J. Qin, F. Gao, and Q. Y. Wen, Phys. Rev. A 104, 022418 (2021), arXiv: 2012.07014.

    ADS  Google Scholar 

  221. D. Jaksch, P. Givi, A. J. Daley, and T. Rung, arXiv: 2209.04915.

  222. C. K. Lee, P. Patil, S. Zhang, and C. Y. Hsieh, Phys. Rev. Res. 3, 023095 (2021), arXiv: 2008.13329.

    Google Scholar 

  223. M. Benedetti, M. Fiorentini, and M. Lubasch, Phys. Rev. Res. 3, 033083 (2021), arXiv: 2009.12361.

    Google Scholar 

  224. A. V. Uvarov, A. S. Kardashin, and J. D. Biamonte, Phys. Rev. A 102, 012415 (2020), arXiv: 1906.10155.

    ADS  Google Scholar 

  225. S. Liu, S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao, arXiv: 2111.13719.

  226. C. Cao, C. Zhang, Z. Wu, M. Grassl, and B. Zeng, arXiv: 2204.03560.

  227. H. Zhang, X. Xu, C. Zhang, M.-H. Yung, T. Huang, and Y. Liu, arXiv: 2209.08306.

  228. K. Plekhanov, M. Rosenkranz, M. Fiorentini, and M. Lubasch, Quantum 6, 670 (2022), arXiv: 2109.03687.

    Google Scholar 

  229. M. Benedetti, B. Coyle, M. Fiorentini, M. Lubasch, and M. Rosenkranz, Phys. Rev. Appl. 16, 044057 (2021), arXiv: 2103.06720.

    ADS  Google Scholar 

  230. V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100, 160501 (2008), arXiv: 0708.1879.

    ADS  MathSciNet  Google Scholar 

  231. X. Sun, G. Tian, S. Yang, P. Yuan, and S. Zhang, arXiv: 2108.06150.

  232. X.-M. Zhang, T. Li, and X. Yuan, arXiv: 2201.11495.

  233. S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631 (2014), arXiv: 1307.0401.

    Google Scholar 

  234. J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Nat. Commun. 9, 4812 (2018), arXiv: 1803.11173.

    ADS  Google Scholar 

  235. S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles, Nat. Commun. 12, 6961 (2021), arXiv: 2007.14384.

    ADS  Google Scholar 

  236. C. Ortiz Marrero, M. Kieferová, and N. Wiebe, PRX Quantum 2, 040316 (2021), arXiv: 2010.15968.

    ADS  Google Scholar 

  237. E. C. Martín, K. Plekhanov, and M. Lubasch, arXiv: 2209.00292.

  238. S. H. Sack, R. A. Medina, A. A. Michailidis, R. Kueng, and M. Serbyn, PRX Quantum 3, 020365 (2022), arXiv: 2201.08194.

    ADS  Google Scholar 

  239. T. Haug, and M. Kim, arXiv: 2104.14543.

  240. L. Broers, and L. Mathey, arXiv: 2111.08085.

  241. E. R. Anschuetz, and B. T. Kiani, arXiv: 2205.05786.

  242. L. Gentini, A. Cuccoli, S. Pirandola, P. Verrucchi, and L. Banchi, Phys. Rev. A 102, 052414 (2020), arXiv: 1912.06744.

    ADS  MathSciNet  Google Scholar 

  243. K. Sharma, S. Khatri, M. Cerezo, and P. J. Coles, New J. Phys. 22, 043006 (2020), arXiv: 1908.04416.

    ADS  MathSciNet  Google Scholar 

  244. W. Saib, P. Wallden, and I. Akhalwaya, arXiv: 2108.12388.

  245. J. Wright, M. Gowrishankar, D. Claudino, P. C. Lotshaw, T. Nguyen, A. J. McCaskey, and T. S. Humble, arXiv: 2112.15540.

  246. M. Gowrishankar, J. Wright, D. Claudino, T. Nguyen, A. McCaskey, and T. S. Humble, in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, New York, 2021), pp. 155–159.

    Google Scholar 

  247. K. Ito, W. Mizukami, and K. Fujii, arXiv: 2106.03390.

  248. C. Ding, X. Y. Xu, S. Zhang, H. L. Huang, and W. S. Bao, Phys. Rev. A 106, 042421 (2022), arXiv: 2208.05378.

    ADS  Google Scholar 

  249. S. Wang, P. Czarnik, A. Arrasmith, M. Cerezo, L. Cincio, and P. J. Coles, arXiv: 2109.01051.

  250. G. S. Barron, and C. J. Wood, arXiv: 2010.08520.

  251. L. Botelho, A. Glos, A. Kundu, J. A. Miszczak, Ö. Salehi, and Z. Zimborás, Phys. Rev. A 105, 022441 (2022), arXiv: 2108.10927.

    ADS  Google Scholar 

  252. C. Ding, Y.-F. Niu, W.-S. Bao, and H.-L. Huang, arXiv: 2109.06805.

  253. Y. Du, Y. Qian, X. Wu, and D. Tao, IEEE Trans. Quantum Eng. 3, 1 (2022).

    Google Scholar 

  254. Y.-F. Niu, S. Zhang, C. Ding, W.-S. Bao, and H.-L. Huang, arXiv: 2208.00450.

  255. J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, Phys. Rev. Appl. 3, 024010 (2015), arXiv: 1409.2202.

    ADS  Google Scholar 

  256. F. Sebastiano, H. Homulle, B. Patra, R. Incandela, J. van Dijk, L. Song, M. Babaie, A. Vladimirescu, and E. Charbon, in Proceedings of the 54th Annual Design Automation Conference (Association for Computing Machinery, New York, 2017), pp. 1–6.

    Google Scholar 

  257. M. Mehrpoo, B. Patra, J. Gong, J. van Dijk, H. Homulle, G. Kiene, A. Vladimirescu, F. Sebastiano, E. Charbon, and M. Babaie, in 2019 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2019), pp. 1–5.

    Google Scholar 

  258. R. N. Das, J. Yoder, D. Rosenberg, D. Kim, D. Yost, J. Mallek, D. Hover, V. Bolkhovsky, A. Kerman, and W. Oliver, in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC) (IEEE, New York, 2018), pp. 504–514.

    Google Scholar 

  259. F. Sebastiano, H. A. Homulle, J. P. van Dijk, R. M. Incandela, B. Patra, M. Mehrpoo, M. Babaie, A. Vladimirescu, and E. Charbon, in 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI) (IEEE, New York, 2017), pp. 59–62.

    Google Scholar 

  260. D. Qin, X. Xu, and Y. Li, Chin. Phys. B 31, 090306 (2022).

    ADS  Google Scholar 

  261. W. J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N. C. Rubin, S. Boixo, K. B. Whaley, R. Babbush, and J. R. McClean, Phys. Rev. X 11, 041036 (2021), arXiv: 2011.07064.

    Google Scholar 

  262. Z. Cai, npj Quantum Inf. 7, 80 (2021), arXiv: 2007.01265.

    ADS  Google Scholar 

  263. Y. Li, and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  264. K. Temme, S. Bravyi, and J. M. Gambetta, Phys. Rev. Lett. 119, 180509 (2017), arXiv: 1612.02058.

    ADS  MathSciNet  Google Scholar 

  265. M. Huo, and Y. Li, Commun. Theor. Phys. 73, 075101 (2021).

    ADS  Google Scholar 

  266. C. Song, J. Cui, H. Wang, J. Hao, H. Feng, and Y. Li, Sci. Adv. 5, eaaw5686 (2019), arXiv: 1812.10903.

    ADS  Google Scholar 

  267. S. Zhang, Y. Lu, K. Zhang, W. Chen, Y. Li, J. N. Zhang, and K. Kim, Nat. Commun. 11, 587 (2020), arXiv: 1905.10135.

    ADS  Google Scholar 

  268. Z. Cai, arXiv: 2110.05389.

  269. R. Takagi, Phys. Rev. Res. 3, 033178 (2021), arXiv: 2006.12509.

    Google Scholar 

  270. R. Takagi, S. Endo, S. Minagawa, and M. Gu, npj Quantum Inf. 8, 114 (2022), arXiv: 2109.04457.

    ADS  Google Scholar 

  271. S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D. Córcoles, B. R. Johnson, C. A. Ryan, and M. Steffen, Phys. Rev. A 87, 062119 (2013), arXiv: 1211.0322.

    ADS  Google Scholar 

  272. D. Greenbaum, arXiv: 1509.02921.

  273. R. Harper, S. T. Flammia, and J. J. Wallman, Nat. Phys. 16, 1184 (2020), arXiv: 1907.13022.

    Google Scholar 

  274. S. T. Flammia, arXiv: 2108.05803.

  275. S. T. Flammia, and J. J. Wallman, ACM Trans. Quantum Comput. 1, 1 (2020).

    Google Scholar 

  276. J. J. Wallman, and J. Emerson, Phys. Rev. A 94, 052325 (2016), arXiv: 1512.01098.

    ADS  Google Scholar 

  277. A. Hashim, R. K. Naik, A. Morvan, J. L. Ville, B. Mitchell, J. M. Kreikebaum, M. Davis, E. Smith, C. Iancu, K. P. O’Brien, I. Hincks, J. J. Wallman, J. Emerson, and I. Siddiqi, Phys. Rev. X 11, 041039 (2021), arXiv: 2010.00215.

    Google Scholar 

  278. A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker, E. A. Martinez, P. Schindler, T. Monz, J. Emerson, and R. Blatt, Nat. Commun. 10, 5347 (2019), arXiv: 1902.08543.

    ADS  Google Scholar 

  279. S. Ferracin, A. Hashim, J.-L. Ville, R. Naik, A. Carignan-Dugas, H. Qassim, A. Morvan, D. I. Santiago, I. Siddiqi, and J. J. Wallman, arXiv: 2201.10672.

  280. E. van den Berg, Z. K. Minev, A. Kandala, and K. Temme, arXiv: 2201.09866.

  281. J. Sun, X. Yuan, T. Tsunoda, V. Vedral, S. C. Benjamin, and S. Endo, Phys. Rev. Appl. 15, 034026 (2021).

    ADS  Google Scholar 

  282. A. Lowe, M. H. Gordon, P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio, Phys. Rev. Res. 3, 033098 (2021), arXiv: 2011.01157.

    Google Scholar 

  283. D. Bultrini, M. H. Gordon, P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio, arXiv: 2107.13470.

  284. T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, and W. J. Zeng, in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, New York, 2020), pp. 306–316.

    Google Scholar 

  285. C. Cao, Y. Yu, Z. Wu, N. Shannon, B. Zeng, and R. Joynt, Quantum Sci. Technol. 8, 015004 (2023).

    ADS  Google Scholar 

  286. M. Krebsbach, B. Trauzettel, and A. Calzona, arXiv: 2201.08080.

  287. C. Cirstoiu, S. Dilkes, D. Mills, S. Sivarajah, and R. Duncan, arXiv: 2204.09725.

  288. E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski, Phys. Rev. Lett. 120, 210501 (2018), arXiv: 1801.03897.

    ADS  Google Scholar 

  289. A. He, B. Nachman, W. A. de Jong, and C. W. Bauer, Phys. Rev. A 102, 012426 (2020).

    ADS  MathSciNet  Google Scholar 

  290. V. R. Pascuzzi, A. He, C. W. Bauer, W. A. de Jong, and B. Nachman, Phys. Rev. A 105, 042406 (2022), arXiv: 2110.13338.

    ADS  Google Scholar 

  291. Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta, K. Temme, and A. Kandala, arXiv: 2108.09197.

  292. M. R. Geller, and Z. Zhou, Phys. Rev. A 88, 012314 (2013), arXiv: 1305.2021.

    ADS  Google Scholar 

  293. Z. Cai, and S. C. Benjamin, Sci. Rep. 9, 11281 (2019), arXiv: 1807.04973.

    ADS  Google Scholar 

  294. K. Schultz, R. LaRose, A. Mari, G. Quiroz, N. Shammah, B. D. Clader, and W. J. Zeng, arXiv: 2201.11792.

  295. A. Mari, N. Shammah, and W. J. Zeng, Phys. Rev. A 104, 052607 (2021), arXiv: 2108.02237.

    ADS  Google Scholar 

  296. M. Otten, and S. K. Gray, Phys. Rev. A 99, 012338 (2019).

    ADS  Google Scholar 

  297. P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio, Quantum 5, 592 (2021), arXiv: 2005.10189.

    Google Scholar 

  298. A. Strikis, D. Qin, Y. Chen, S. C. Benjamin, and Y. Li, PRX Quantum 2, 040330 (2021), arXiv: 2005.07601.

    ADS  Google Scholar 

  299. A. Zlokapa, and A. Gheorghiu, arXiv: 2005.10811.

  300. A. Zhukov, and W. Pogosov, Quantum Inf. Process. 21, 93 (2022), arXiv: 2105.07793.

    ADS  Google Scholar 

  301. M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W. Bauer, and W. A. de Jong, Phys. Rev. Lett. 127, 270502 (2021), arXiv: 2103.08591.

    Google Scholar 

  302. J. Vovrosh, K. E. Khosla, S. Greenaway, C. Self, M. S. Kim, and J. Knolle, Phys. Rev. E 104, 035309 (2021), arXiv: 2101.01690.

    ADS  Google Scholar 

  303. A. Montanaro, and S. Stanisic, arXiv: 2102.02120.

  304. S.-X. Zhang, Z.-Q. Wan, C.-Y. Hsieh, H. Yao, and S. Zhang, arXiv: 2112.10380.

  305. P. Czarnik, M. McKerns, A. T. Sornborger, and L. Cincio, arXiv: 2204.07109.

  306. C. Kim, K. D. Park, and J. K. Rhee, IEEE Access 8, 188853 (2020).

    Google Scholar 

  307. Y. Chen, M. Farahzad, S. Yoo, and T. C. Wei, Phys. Rev. A 100, 052315 (2019), arXiv: 1904.11935.

    ADS  Google Scholar 

  308. S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay, and J. M. Gambetta, Phys. Rev. A 103, 042605 (2021), arXiv: 2006.14044.

    ADS  Google Scholar 

  309. F. B. Maciejewski, F. Baccari, Z. Zimborás, and M. Oszmaniec, Quantum 5, 464 (2021), arXiv: 2101.02331.

    Google Scholar 

  310. F. B. Maciejewski, Z. Zimborás, and M. Oszmaniec, Quantum 4, 257 (2020), arXiv: 1907.08518.

    Google Scholar 

  311. J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, C. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, Nat. Phys. 5, 27 (2009), arXiv: 0807.2444.

    Google Scholar 

  312. B. Nachman, M. Urbanek, W. A. de Jong, and C. W. Bauer, npj Quantum Inf. 6, 84 (2020), arXiv: 1910.01969.

    ADS  Google Scholar 

  313. I. Ouadah, and H. Benaissa, Dealing with Quantum Computer Readout Noise Through High Energy Physics Unfolding Methods, Dissertation for Doctoral Degree (Saad Dahlab University, Boumerdés, 2021).

    Google Scholar 

  314. P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta, PRX Quantum 2, 040326 (2021), arXiv: 2108.12518.

    ADS  Google Scholar 

  315. B. Yang, R. Raymond, and S. Uno, arXiv: 2201.11046.

  316. L. Funcke, T. Hartung, K. Jansen, S. Kühn, P. Stornati, and X. Wang, Phys. Rev. A 105, 062404 (2022), arXiv: 2007.03663.

    ADS  Google Scholar 

  317. M. R. Geller, Quantum Sci. Technol. 5, 03LT01 (2020), arXiv: 2002.01471.

    Google Scholar 

  318. M. R. Geller, and M. Sun, arXiv: 2001.09980.

  319. R. Hicks, C. W. Bauer, and B. Nachman, Phys. Rev. A 103, 022407 (2021), arXiv: 2010.07496.

    ADS  Google Scholar 

  320. A. W. R. Smith, K. E. Khosla, C. N. Self, and M. S. Kim, Sci. Adv. 7, eabi8009 (2021).

    ADS  Google Scholar 

  321. E. van den Berg, Z. K. Minev, and K. Temme, Phys. Rev. A 105, 032620 (2022).

    ADS  Google Scholar 

  322. S. Tang, C. Zheng, and K. Wang, arXiv: 2206.13743.

  323. R. Hicks, B. Kobrin, C. W. Bauer, and B. Nachman, Phys. Rev. A 105, 012419 (2022), arXiv: 2108.12432.

    ADS  Google Scholar 

  324. J. Kim, B. Oh, Y. Chong, E. Hwang, and D. K. Park, New J. Phys. 24, 073009 (2022), arXiv: 2112.03585.

    ADS  Google Scholar 

  325. B. Koczor, Phys. Rev. X 11, 031057 (2021), arXiv: 2011.05942.

    Google Scholar 

  326. J. Cotler, S. Choi, A. Lukin, H. Gharibyan, T. Grover, M. E. Tai, M. Rispoli, R. Schittko, P. M. Preiss, A. M. Kaufman, M. Greiner, H. Pichler, and P. Hayden, Phys. Rev. X 9, 031013 (2019), arXiv: 1812.02175.

    Google Scholar 

  327. Z. Cai, arXiv: 2107.07279.

  328. Y. Xiong, S. X. Ng, and L. Hanzo, IEEE Trans. Commun. 70, 1927 (2022).

    Google Scholar 

  329. H.-Y. Hu, R. LaRose, Y.-Z. You, E. Rieffel, and Z. Wang, arXiv: 2203.07263.

  330. A. Seif, Z.-P. Cian, S. Zhou, S. Chen, and L. Jiang, arXiv: 2203.07309.

  331. M. Huo, and Y. Li, Phys. Rev. A 105, 022427 (2022), arXiv: 2105.01239.

    ADS  Google Scholar 

  332. P. Czarnik, A. Arrasmith, L. Cincio, and P. J. Coles, arXiv: 2102.06056.

  333. B. Koczor, New J. Phys. 23, 123047 (2021), arXiv: 2104.00608.

    ADS  MathSciNet  Google Scholar 

  334. H. Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020), arXiv: 2002.08953.

    Google Scholar 

  335. H. Y. Huang, R. Kueng, and J. Preskill, Phys. Rev. Lett. 127, 030503 (2021), arXiv: 2103.07510.

    ADS  Google Scholar 

  336. A. Elben, R. Kueng, H. Y. R. Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Calabrese, B. Kraus, J. Preskill, P. Zoller, and B. Vermersch, Phys. Rev. Lett. 125, 200501 (2020), arXiv: 2007.06305.

    ADS  Google Scholar 

  337. N. Yoshioka, H. Hakoshima, Y. Matsuzaki, Y. Tokunaga, Y. Suzuki, and S. Endo, Phys. Rev. Lett. 129, 020502 (2022), arXiv: 2107.02611.

    ADS  Google Scholar 

  338. S. McArdle, X. Yuan, and S. Benjamin, Phys. Rev. Lett. 122, 180501 (2019), arXiv: 1807.02467.

    ADS  Google Scholar 

  339. M. Urbanek, D. Camps, R. Van Beeumen, and W. A. de Jong, J. Chem. Theor. Comput. 16, 5425 (2020).

    Google Scholar 

  340. X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O’Brien, Phys. Rev. A 98, 062339 (2018).

    ADS  Google Scholar 

  341. Z. Cai, Quantum 5, 548 (2021), arXiv: 2101.03151.

    Google Scholar 

  342. R. Sagastizabal, X. Bonet-Monroig, M. Singh, M. A. Rol, C. C. Bultink, X. Fu, C. H. Price, V. P. Ostroukh, N. Muthusubramanian, A. Bruno, M. Beekman, N. Haider, T. E. O’Brien, and L. DiCarlo, Phys. Rev. A 100, 010302 (2019), arXiv: 1902.11258.

    ADS  Google Scholar 

  343. W. J. Huggins, J. R. McClean, N. C. Rubin, Z. Jiang, N. Wiebe, K. B. Whaley, and R. Babbush, npj Quantum Inf. 7, 23 (2021).

    ADS  Google Scholar 

  344. T. E. O’Brien, S. Polla, N. C. Rubin, W. J. Huggins, S. McArdle, S. Boixo, J. R. McClean, and R. Babbush, PRX Quantum 2, 020317 (2021), arXiv: 2010.02538.

    ADS  Google Scholar 

  345. A. Gonzales, R. Shaydulin, Z. Saleem, and M. Suchara, arXiv: 2206.00215.

  346. A. Hashim, Noise Tailoring for Enhancing the Capabilities of Quantum Computers, Dissertation for Doctoral Degree (University of California, Berkeley, 2022).

    Google Scholar 

  347. B. Zhang, S. Majumder, P. H. Leung, S. Crain, Y. Wang, C. Fang, D. M. Debroy, J. Kim, and K. R. Brown, Phys. Rev. Appl. 17, 034074 (2022), arXiv: 2104.01119.

    ADS  Google Scholar 

  348. S. Majumder, C. G. Yale, T. D. Morris, D. S. Lobser, A. D. Burch, M. N. H. Chow, M. C. Revelle, S. M. Clark, and R. C. Pooser, arXiv: 2205.14225.

  349. V. Leyton-Ortega, S. Majumder, and R. C. Pooser, arXiv: 2204.12407.

  350. M. Otten, and S. K. Gray, npj Quantum Inf. 5, 11 (2019), arXiv: 1804.06969.

    ADS  Google Scholar 

  351. J. R. McClean, Z. Jiang, N. C. Rubin, R. Babbush, and H. Neven, Nat. Commun. 11, 636 (2020), arXiv: 1903.05786.

    ADS  Google Scholar 

  352. E. L. Hahn, Phys. Rev. 80, 580 (1950).

    ADS  Google Scholar 

  353. L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999), arXiv: quant-ph/9809071.

    ADS  MathSciNet  Google Scholar 

  354. M. J. Biercuk, H. Uys, A. P. Vandevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Nature 458, 996 (2009), arXiv: 0812.5095.

    ADS  Google Scholar 

  355. G. Quiroz, and D. A. Lidar, Phys. Rev. A 88, 052306 (2013), arXiv: 1210.5538.

    ADS  Google Scholar 

  356. H. Qi, J. P. Dowling, and L. Viola, Quantum Inf. Process. 16, 272 (2017), arXiv: 1702.05533.

    ADS  Google Scholar 

  357. J. Zeng, X. H. Deng, A. Russo, and E. Barnes, New J. Phys. 20, 033011 (2018), arXiv: 1703.00816.

    ADS  Google Scholar 

  358. G. S. Ravi, K. N. Smith, P. Gokhale, A. Mari, N. Earnest, A. Javadi-Abhari, and F. T. Chong, in 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, New York, 2022), pp. 288–303

    Google Scholar 

  359. K. N. Smith, G. S. Ravi, P. Murali, J. M. Baker, N. Earnest, A. Javadi-Abhari, and F. T. Chong, arXiv: 2105.01760.

  360. G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen, J. M. Chow, A. D. Crcoles-Gonzales, A. J. Cross, A. Cross, J. C.-B., C. Culver, S. De La P. Gonz¢lez, E. De La Torre, D. Ding, E. Dumitrescu, I. Duran, P. Eendebak, M. Everitt, I. F. Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B. G. Gago, J. Gomez-Mosquera, D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers, Ł. Herok, H. Horii, S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa, A. Karazeev, K. Krsulich, P. Liu, Y. Luh, Y. Maeng, M. Marques, F. J. Martłn-Fern¢ndez, D. T. McClure, D. McKay, S. Meesala, A. Mezzacapo, N. Moll, D. M. Rodrłguez, G. Nannicini, P. Nation, P. Ollitrault, L. J. O’Riordan, H. Paik, J. Prez, A. Phan, M. Pistoia, V. Prutyanov, M. Reuter, J. Rice, A. R. Davila, R. H. P. Rudy, M. Ryu, N. Sathaye, C. Schnabel, E. Schoute, K. Setia, Y. Shi, A. Silva, Y. Siraichi, S. Sivarajah, John A. Smolin, M. Soeken, H. Takahashi, I. Tavernelli, C. Taylor, P. Taylour, K. Trabing, M. Treinish, W. Turner, D. Vogt-Lee, C. Vuillot, J. A. Wildstrom, J. Wilson, E. Winston, C. Wood, S. Wood, S. Wörner, I. Y. Akhalwaya, and C. Zoufal, Zenodo (2019), https://doi.org/10.5281/zenodo.2562111.

  361. D. Qin, Y. Chen, and Y. Li, arXiv: 2112.06255.

  362. Y. Quek, D. S. França, S. Khatri, J. J. Meyer, and J. Eisert, arXiv: 2210.11505.

  363. R. Takagi, H. Tajima, and M. Gu, arXiv: 2208.09178.

  364. A. Zulehner, A. Paler, and R. Wille, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 38, 1226 (2019).

    Google Scholar 

  365. A. Kissinger, and A. M.-V. de Griend, arXiv: 1904.00633.

  366. B. Nash, V. Gheorghiu, and M. Mosca, Quantum Sci. Technol. 5, 025010 (2020), arXiv: 1904.01972.

    ADS  Google Scholar 

  367. B. Wu, X. He, S. Yang, L. Shou, G. Tian, J. Zhang, and X. Sun, arXiv: 1910.14478.

  368. A. Barenco, C. H. Bennett, R. Cleve, D. P. Divincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995), arXiv: quant-ph/9503016.

    ADS  Google Scholar 

  369. E. Knill, arXiv: quant-ph/9508006.

  370. J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, Phys. Rev. Lett. 92, 177902 (2004), arXiv: quant-ph/0312218.

    ADS  Google Scholar 

  371. V. V. Shende, I. L. Markov, and S. S. Bullock, Phys. Rev. A 69, 062321 (2004), arXiv: quant-ph/0308033.

    ADS  Google Scholar 

  372. M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, Phys. Rev. Lett. 93, 130502 (2004), arXiv: quant-ph/0404089.

    ADS  Google Scholar 

  373. M. Y. Siraichi, V. F. dos Santos, S. Collange, and F. M. Q. Pereira, inProceedings of the 2018 International Symposium on Experimental Robotics (Association for Computing Machinery, New York, 2018), pp. 113–125.

    Google Scholar 

  374. M. Mottonen, and J. J. Vartiainen, arXiv: quant-ph/0504100.

  375. S. Shannon, Trends in Quantum Computing Research (Nova Science Publishers, Inc., New York, 2006).

    Google Scholar 

  376. S. Johri, S. Debnath, A. Mocherla, A. Singk, A. Prakash, J. Kim, and I. Kerenidis, npj Quantum Inf. 7, 122 (2021), arXiv: 2012.04145.

    ADS  Google Scholar 

  377. X. Sun, G. Tian, S. Yang, P. Yuan, and S. Zhang, arXiv: 2108.06150.

  378. V. Kliuchnikov, D. Maslov, and M. Mosca, arXiv: 1206.5236.

  379. B. Giles, and P. Selinger, Phys. Rev. A 87, 032332 (2013), arXiv: 1212.0506.

    ADS  Google Scholar 

  380. C. M. Dawson, and M. A. Nielsen, arXiv: quant-ph/0505030.

  381. R. Cleve, and J. Watrous, in Proceedings of 41st Annual Symposium on Foundations of Computer Science (IEEE, New York, 2000), pp. 526–536.

    Google Scholar 

  382. C. Moore, and M. Nilsson, SIAM J. Comput. 31, 799 (2001).

    MathSciNet  Google Scholar 

  383. P. Selinger, Phys. Rev. A 87, 042302 (2013), arXiv: 1210.0974.

    ADS  Google Scholar 

  384. M. Amy, D. Maslov, and M. Mosca, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33, 1476 (2014).

    Google Scholar 

  385. J. Jiang, X. Sun, S.-H. Teng, B. Wu, K. Wu, and J. Zhang, Optimal Space-Depth Trade-Off of CNOT Circuits in Quantum Logic Synthesis (ACM, New York, 2020), pp. 213–229.

    MATH  Google Scholar 

  386. C. Aravanis, G. Korpas, and J. Marecek, arXiv: 2209.14356.

  387. D. Maslov, and W. Yang, arXiv: 2210.16195.

  388. Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, in Third International Conference on Quantum, Nano and Micro Technologies (IEEE, New York, 2009), pp. 26–33.

    Google Scholar 

  389. A. Shafaei, M. Saeedi, and M. Pedram, in 19th Asia and South Pacific Design Automation Conference (ASP-DAC) (IEEE, New York, 2014), pp. 495–500.

    Google Scholar 

  390. A. M. Childs, E. Schoute, and C. M. Unsal, in 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019), edited by W. van Dam, and L. Mancinska (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, 2019), pp. 3:1–3:24.

  391. D. Maslov, S. M. Falconer, and M. Mosca, arXiv: quant-ph/0703256.

  392. A. Lye, R. Wille, and R. Drechsler, in The 20th Asia and South Pacific Design Automation Conference (IEEE, New York, 2015), pp. 178–183.

    Google Scholar 

  393. A. Shafaei, M. Saeedi, and M. Pedram, in The 50th ACM/EDAC/IEEE Design Automation Conference (DAC) (IEEE, New York, 2013), pp. 1–6.

    Google Scholar 

  394. R. Wille, L. Burgholzer, and A. Zulehner, in 2019 56th ACM/IEEE Design Automation Conference (DAC) (IEEE, New York, 2019), pp. 1–6.

    Google Scholar 

  395. P. Zhu, X. Cheng, and Z. Guan, Quantum Inf. Process. 19, 391 (2020).

    ADS  Google Scholar 

  396. C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (Association for Computing Machinery, New York, 2021).

    Google Scholar 

  397. F. A. Aloul, B. A. Rawi, and M. Aboelaze, in 3rd International Conference on Electrical and Electronics Engineering (EEE, Changsha, 2006), pp. 1–4.

    Google Scholar 

  398. G. Li, Y. Ding, and Y. Xie, in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (Association for Computing Machinery, New York, 2019).

    Google Scholar 

  399. X. Zhou, S. Li, and Y. Feng, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 39, 4683 (2020).

    Google Scholar 

  400. X. Zhou, Y. Feng, and S. Li, ACM Trans. Des. Autom. Electron. Syst. 27, 1 (2022).

    Google Scholar 

  401. M. G. Pozzi, S. J. Herbert, A. Sengupta, and R. D. Mullins, arXiv: 2007.15957.

  402. A. Sinha, U. Azad, and H. Singh, in Proceedings of the AAAI Conference on Artificial Intelligence (Association for the Advancement of Artificial Intelligence, New York, 2022), p. 9935.

    Google Scholar 

  403. X. Zhou, Y. Feng, and S. Li, in Proceedings of the 39th International Conference on Computer-Aided Design (Association for Computing Machinery, New York, 2020).

    Google Scholar 

  404. A. Paler, L. M. Sasu, A. C. Florea, and R. Andonie, ACM Trans. Quantum Comput. 4, 1 (2022).

    Google Scholar 

  405. M. Saeedi, R. Wille, and R. Drechsler, Quantum Inf. Process. 10, 355 (2011).

    MathSciNet  Google Scholar 

  406. R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and R. Drechsler, in 21st Asia and South Pacific Design Automation Conference (ASP-DAC) (2016), pp. 292–297.

  407. D. Cuomo, M. Caleffi, and A. S. Cacciapuoti, IET Quantum Commun. 1, 3 (2020).

    Google Scholar 

  408. D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi, IEEE Trans. Quantum Eng. 2, 1 (2021).

    Google Scholar 

  409. D. Cuomo, M. Caleffi, K. Krsulich, F. Tramonto, G. Agliardi, E. Prati, and A. S. Cacciapuoti, arXiv: 2112.14139.

  410. S. Aaronson, and D. Gottesman, Phys. Rev. A 70, 052328 (2004), arXiv: quant-ph/0406196.

    ADS  Google Scholar 

  411. K. Markov, I. Patel, and J. Hayes, Quantum Inf. Comput. 8, 0282 (2008).

    MathSciNet  Google Scholar 

  412. P. Hart, N. Nilsson, and B. Raphael, IEEE Trans. Syst. Sci. Cyber. 4, 100 (1968).

    Google Scholar 

  413. J. Emerson, R. Alicki, and K. Zyczkowski, J. Opt. B-Quantum Semiclass. Opt. 7, S347 (2005), arXiv: quant–ph/0503243.

    ADS  Google Scholar 

  414. E. Magesan, J. M. Gambetta, and J. Emerson, Phys. Rev. Lett. 106, 180504 (2011), arXiv: 1009.3639.

    ADS  Google Scholar 

  415. C. Dankert, R. Cleve, J. Emerson, and E. Livine, Phys. Rev. A 80, 012304 (2009), arXiv: quant-ph/0606161.

    ADS  Google Scholar 

  416. C. Dankert, R. Cleve, J. Emerson, and E. Livine, Phys. Rev. A 80, 012304 (2009), arXiv: quant-ph/0606161.

    ADS  Google Scholar 

  417. E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan, J. M. Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe, M. B. Rothwell, T. A. Ohki, M. B. Ketchen, and M. Steffen, Phys. Rev. Lett. 109, 080505 (2012), arXiv: 1203.4550.

    ADS  Google Scholar 

  418. J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest, J. Baugh, D. G. Cory, and R. Laflamme, Science 317, 1893 (2007), arXiv: 0707.0685.

    ADS  Google Scholar 

  419. R. Barends, J. Kelly, A. Veitia, A. Megrant, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, E. Jeffrey, C. Neill, P. J. J. O’Malley, J. Mutus, C. Quintana, P. Roushan, D. Sank, J. Wenner, T. C. White, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Phys. Rev. A 90, 030303 (2014), arXiv: 1406.3364.

    ADS  Google Scholar 

  420. E. Onorati, A. H. Werner, and J. Eisert, Phys. Rev. Lett. 123, 060501 (2019), arXiv: 1811.11775.

    ADS  Google Scholar 

  421. A. Carignan-Dugas, J. J. Wallman, and J. Emerson, Phys. Rev. A 92, 060302 (2015), arXiv: 1508.06312.

    ADS  Google Scholar 

  422. A. W. Cross, E. Magesan, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, npj Quantum Inf. 2, 16012 (2016), arXiv: 1510.02720.

    ADS  Google Scholar 

  423. J. Helsen, X. Xue, L. M. K. Vandersypen, and S. Wehner, npj Quantum Inf. 5, 71 (2019), arXiv: 1806.02048.

    ADS  Google Scholar 

  424. D. S. França, and A. K. Hashagen, J. Phys. A-Math. Theor. 51, 395302 (2018), arXiv: 1803.03621.

    Google Scholar 

  425. T. J. Proctor, A. Carignan-Dugas, K. Rudinger, E. Nielsen, R. Blume-Kohout, and K. Young, Phys. Rev. Lett. 123, 030503 (2019), arXiv: 1807.07975.

    ADS  Google Scholar 

  426. Y. Zhang, W. Yu, P. Zeng, G. Liu, and X. Ma, arXiv: 2203.10320.

  427. J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 108, 260503 (2012), arXiv: 1203.3733.

    ADS  Google Scholar 

  428. J. M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R. Johnson, J. A. Smolin, J. M. Chow, C. A. Ryan, C. Rigetti, S. Poletto, T. A. Ohki, M. B. Ketchen, and M. Steffen, Phys. Rev. Lett. 109, 240504 (2012), arXiv: 1204.6308.

    ADS  Google Scholar 

  429. D. C. McKay, S. Sheldon, J. A. Smolin, J. M. Chow, and J. M. Gambetta, Phys. Rev. Lett. 122, 200502 (2019).

    ADS  Google Scholar 

  430. S. Garion, N. Kanazawa, H. Landa, D. C. McKay, S. Sheldon, A. W. Cross, and C. J. Wood, Phys. Rev. Res. 3, 013204 (2021), arXiv: 2007.08532.

    Google Scholar 

  431. J. Helsen, I. Roth, E. Onorati, A. H. Werner, and J. Eisert, PRX Quantum 3, 020357 (2022).

    ADS  Google Scholar 

  432. S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Nat. Phys. 14, 595 (2018).

    Google Scholar 

  433. C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, H. Neven, and J. M. Martinis, Science 360, 195 (2018).

    ADS  MathSciNet  Google Scholar 

  434. R. Barends, C. M. Quintana, A. G. Petukhov, Y. Chen, D. Kafri, K. Kechedzhi, R. Collins, O. Naaman, S. Boixo, F. Arute, K. Arya, D. Buell, B. Burkett, Z. Chen, B. Chiaro, A. Dunsworth, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, T. Huang, E. Jeffrey, J. Kelly, P. V. Klimov, F. Kostritsa, D. Landhuis, E. Lucero, M. McEwen, A. Megrant, X. Mi, J. Mutus, M. Neeley, C. Neill, E. Ostby, P. Roushan, D. Sank, K. J. Satzinger, A. Vainsencher, T. White, J. Yao, P. Yeh, A. Zalcman, H. Neven, V. N. Smelyanskiy, and J. M. Martinis, Phys. Rev. Lett. 123, 210501 (2019), arXiv: 1907.02510.

    ADS  Google Scholar 

  435. S. Aaronson, and S. Gunn, arXiv: 1910.12085.

  436. B. Barak, C.-N. Chou, and X. Gao, arXiv: 2005.02421.

  437. J. Chen, D. Ding, C. Huang, and L. Kong, arXiv: 2206.08293.

  438. A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, Phys. Rev. A 100, 032328 (2019), arXiv: 1811.12926.

    ADS  Google Scholar 

  439. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A 60, 1888 (1999).

    ADS  MathSciNet  Google Scholar 

  440. Quantinuum, https://www.quantinuum.com/pressrelease/quantinuumsets-new-record-with-highest-ever-quantum-volume

  441. P. Jurcevic, D. Zajac, J. Stehlik, I. Lauer, and R. Mandelbaum, https://research.ibm.com/blog/quantum-volume-256.

  442. A. Wack, H. Paik, A. Javadi-Abhari, P. Jurcevic, I. Faro, J. Gambetta, and B. Johnson, arXiv: 2110.14108.

  443. T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. Blume-Kohout, Nat. Phys. 18, 75 (2022).

    Google Scholar 

  444. Y. Dong, and L. Lin, Phys. Rev. A 103, 062412 (2021), arXiv: 2006.04010.

    ADS  Google Scholar 

  445. T. Tomesh, P. Gokhale, V. Omole, G. S. Ravi, K. N. Smith, J. Viszlai, X.-C. Wu, N. Hardavellas, M. R. Martonosi, and F. T. Chong, in 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) (IEEE, New York, 2022), pp. 587–603.

    Google Scholar 

  446. W. van der Schoot, D. Leermakers, R. Wezeman, N. Neumann, and F. Phillipson, in 2022 IEEE International Conference on Quantum Software (QSW) (IEEE, New York, 2022), pp. 9–16.

    Google Scholar 

  447. T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise, C. H. Baldwin, K. Mayer, and T. Proctor, arXiv: 2110.03137.

  448. IonQ, https://ionq.com/posts/february-23-2022-algorithmic-qubits.

  449. I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo, arXiv: 1807.10749.

  450. K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu, G. Arnold, M. Richter, T. Lippert, H. Watanabe, and N. Ito, Comput. Phys. Commun. 176, 121 (2007).

    ADS  Google Scholar 

  451. M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik, arXiv: 1601.07195.

  452. T. Häner, and D. S. Steiger, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (Association for Computing Machinery, New York, 2017).

    Google Scholar 

  453. E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, E. W. Draeger, E. T. Holland, and R. Wisnieff, arXiv: 1710.05867.

  454. D. S. Steiger, T. Häner, and M. Troyer, Quantum 2, 49 (2018).

    Google Scholar 

  455. X. Z. Luo, J. G. Liu, P. Zhang, and L. Wang, Quantum 4, 341 (2020), arXiv: 1912.10877.

    Google Scholar 

  456. T. Jones, A. Brown, I. Bush, and S. C. Benjamin, Sci. Rep. 9, 10736 (2019), arXiv: 1802.08032.

    ADS  Google Scholar 

  457. Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai, J. Chen, K. M. Nakanishi, K. Mitarai, R. Imai, S. Tamiya, T. Yamamoto, T. Yan, T. Kawakubo, Y. O. Nakagawa, Y. Ibe, Y. Zhang, H. Yamashita, H. Yoshimura, A. Hayashi, and K. Fujii, Quantum 5, 559 (2021), arXiv: 2011.13524.

    Google Scholar 

  458. R. Orús, Ann. Phys. 349, 117 (2014), arXiv: 1306.2164.

    ADS  MathSciNet  Google Scholar 

  459. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003), arXiv: quant-ph/0301063.

    ADS  Google Scholar 

  460. G. Vidal, Phys. Rev. Lett. 93, 040502 (2004), arXiv: quant-ph/0310089.

    ADS  Google Scholar 

  461. A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech.-Theor. Exp. 2004(4), P04005 (2004), arXiv: cond-mat/0403313.

    Google Scholar 

  462. F. Verstraete, and J. I. Cirac, arXiv: cond-mat/0407066.

  463. Y. Y. Shi, L. M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006), arXiv: quant-ph/0511070.

    ADS  Google Scholar 

  464. G. Vidal, Phys. Rev. Lett. 99, 220405 (2007), arXiv: condmat/0512165.

    ADS  Google Scholar 

  465. U. Schollwöck, Ann. Phys. 326, 96 (2011), arXiv: 1008.3477.

    ADS  MathSciNet  Google Scholar 

  466. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

    ADS  Google Scholar 

  467. S. R. White, Phys. Rev. B 48, 10345 (1993).

    ADS  Google Scholar 

  468. A. McCaskey, E. Dumitrescu, M. Chen, D. Lyakh, and T. Humble, PLoS ONE 13, e0206704 (2018), arXiv: 1807.07914.

    Google Scholar 

  469. D. S. Wang, C. D. Hill, and L. C. L. Hollenberg, Quantum Inf. Process. 16, 176 (2017).

    ADS  Google Scholar 

  470. A. Dang, C. D. Hill, and L. C. L. Hollenberg, Quantum 3, 116 (2019).

    Google Scholar 

  471. H. L. Huang, W. S. Bao, and C. Guo, Phys. Rev. A 100, 032305 (2019), arXiv: 1812.06614.

    ADS  Google Scholar 

  472. Y. Zhou, E. M. Stoudenmire, and X. Waintal, Phys. Rev. X 10, 041038 (2020), arXiv: 2002.07730.

    Google Scholar 

  473. H. Shang, L. Shen, Y. Fan, Z. Xu, C. Guo, J. Liu, W. Zhou, H. Ma, R. Lin, Y. Yang, F. Li, Z. Wang, Y. Zhang, and Z. Li, Large-Scale Simulation of Quantum Computational Chemistry on a New Sunway Supercomputer, in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (IEEE, New York, 2022).

    Google Scholar 

  474. E. J. Bylaska, D. Song, N. P. Bauman, K. Kowalski, D. Claudino, and T. S. Humble, Front. Chem. 9, 26 (2021), arXiv: 2009.00080.

    ADS  Google Scholar 

  475. S. Yalouz, B. Senjean, J. Günther, F. Buda, T. E. O’Brien, and L. Visscher, Quantum Sci. Technol. 6, 024004 (2021).

    ADS  Google Scholar 

  476. D. Z. Manrique, I. T. Khan, K. Yamamoto, V. Wichitwechkarn, D. M. Ramo, arXiv: 2008.08694.

  477. R. Xia, and S. Kais, Quantum Sci. Technol. 6, 015001 (2021), arXiv: 2005.08451.

    ADS  Google Scholar 

  478. W. Li, Z. Huang, C. Cao, Y. Huang, Z. Shuai, X. Sun, J. Sun, X. Yuan, and D. Lv, Chem. Sci. 13, 8953 (2022).

    Google Scholar 

  479. J. Liu, L. Wan, Z. Li, and J. Yang, J. Chem. Theor. Comput. 16, 6904 (2020).

    Google Scholar 

  480. Y. Fan, J. Liu, Z. Li, and J. Yang, J. Phys. Chem. Lett. 12, 8833 (2021).

    Google Scholar 

  481. Y. Fan, J. Liu, Z. Li, and J. Yang, J. Phys. Chem. Lett. 12, 8833 (2021).

    Google Scholar 

  482. C. Cao, J. Hu, W. Zhang, X. Xu, D. Chen, F. Yu, J. Li, H. S. Hu, D. Lv, and M. H. Yung, Phys. Rev. A 105, 062452 (2022).

    ADS  Google Scholar 

  483. I. G. Ryabinkin, A. F. Izmaylov, and S. N. Genin, Quantum Sci. Technol. 6, 024012 (2021), arXiv: 2009.13622.

    ADS  Google Scholar 

  484. Z. Xu, Y. Fan, H. Shang, and C. Guo, arXiv: 2211.07983.

  485. M. B. Hastings, J. Math. Phys. 50, 095207 (2009), arXiv: 0903.3253.

    ADS  MathSciNet  Google Scholar 

  486. Z. Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, Phys. Rev. X 8, 031012 (2018), arXiv: 1709.01662.

    Google Scholar 

  487. H. C. Jiang, Z. Y. Weng, and T. Xiang, Phys. Rev. Lett. 101, 090603 (2008), arXiv: 0806.3719.

    ADS  Google Scholar 

  488. P. Corboz, R. Orús, B. Bauer, and G. Vidal, Phys. Rev. B 81, 165104 (2010), arXiv: 0912.0646.

    ADS  Google Scholar 

  489. J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 101, 250602 (2008), arXiv: cond-mat/0703788.

    ADS  Google Scholar 

  490. M. Lubasch, J. I. Cirac, and M. C. Bañuls, Phys. Rev. B 90, 064425 (2014), arXiv: 1405.3259.

    ADS  Google Scholar 

  491. M. Levin, and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007), arXiv: cond-mat/0611687.

    ADS  Google Scholar 

  492. F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57, 143 (2008), arXiv: 0907.2796.

    ADS  Google Scholar 

  493. R. Orús, and G. Vidal, Phys. Rev. B 80, 094403 (2009), arXiv: 0905.3225.

    ADS  Google Scholar 

  494. Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and T. Xiang, Phys. Rev. Lett. 103, 160601 (2009), arXiv: 0809.0182.

    ADS  Google Scholar 

  495. H. H. Zhao, Z. Y. Xie, Q. N. Chen, Z. C. Wei, J. W. Cai, and T. Xiang, Phys. Rev. B 81, 174411 (2010), arXiv: 1002.1405.

    ADS  Google Scholar 

  496. Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, Phys. Rev. B 86, 045139 (2012), arXiv: 1201.1144.

    ADS  Google Scholar 

  497. B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R. Biswas, and S. Mandrá, npj Quantum Inf. 5, 86 (2019), arXiv: 1811.09599.

    ADS  Google Scholar 

  498. B. Villalonga, D. Lyakh, S. Boixo, H. Neven, T. S. Humble, R. Biswas, E. G. Rieffel, A. Ho, and S. Mandrá, Quantum Sci. Technol. 5, 034003 (2020), arXiv: 1905.00444.

    ADS  Google Scholar 

  499. I. L. Markov, and Y. Shi, SIAM J. Comput. 38, 963 (2008).

    MathSciNet  Google Scholar 

  500. J. Gray, and S. Kourtis, Quantum 5, 410 (2021), arXiv: 2002.01935.

    Google Scholar 

  501. C. Huang, F. Zhang, M. Newman, X. Ni, D. Ding, J. Cai, X. Gao, T. Wang, F. Wu, G. Zhang, H. S. Ku, Z. Tian, J. Wu, H. Xu, H. Yu, B. Yuan, M. Szegedy, Y. Shi, H. H. Zhao, C. Deng, and J. Chen, Nat. Comput. Sci. 1, 578 (2021).

    Google Scholar 

  502. Y. Chen, Y. Liu, X. Shi, J. Song, X. Liu, L. Gan, C. Guo, H. Fu, D. Chen, and G. Yang, Lifetime-Based Optimization for Simulating Quantum Circuits on a New Sunway Supercomputer (Association for Computing Machinery, New York, 2023).

    Google Scholar 

  503. G. Kalachev, P. Panteleev, and M.-H. Yung, arXiv: 2108.05665.

  504. J. Chen, F. Zhang, C. Huang, M. Newman, and Y. Shi, arXiv: 1805.01450.

  505. M. C. Chen, R. Li, L. Gan, X. Zhu, G. Yang, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 124, 080502 (2020), arXiv: 1901.05003.

    ADS  Google Scholar 

  506. R. Li, B. Wu, M. Ying, X. Sun, and G. Yang, IEEE Trans. Parallel Distrib. Syst. 31, 805 (2020).

    Google Scholar 

  507. E. C. G. Sudarshan, P. M. Mathews, and J. Rau, Phys. Rev. 121, 920 (1961).

    ADS  MathSciNet  Google Scholar 

  508. T. F. Jordan, and E. C. G. Sudarshan, J. Math. Phys. 2, 772 (1961).

    ADS  Google Scholar 

  509. M. D. Choi, Linear Algebra Appl. 10, 285 (1975).

    MathSciNet  Google Scholar 

  510. S.-X. Zhang, J. Allcock, Z.-Q. Wan, S. Liu, J. Sun, H. Yu, X.-H. Yang, J. Qiu, Z. Ye, Y.-Q. Chen, C.-K. Lee, Y.-C. Zheng, S.-K. Jian, H. Yao, C.-Y. Hsieh, and S. Zhang, arXiv: 2205.10091.

  511. A. Griewank, Opt. Methods Softw. 1, 35 (1992).

    Google Scholar 

  512. C. Guo, and D. Poletti, Phys. Rev. E 103, 013309 (2021).

    ADS  Google Scholar 

  513. M. Schuld, and N. Killoran, arXiv: 2203.01340.

  514. E. Tang, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (Association for Computing Machinery, New York, 2019), p. 217.

    Google Scholar 

  515. C. Ding, T.-Y. Bao, and H.-L. Huang, in IEEE Transactions on Neural Networks and Learning Systems (IEEE, New York, 2021).

    Google Scholar 

  516. J. M. Arrazola, A. Delgado, B. R. Bardhan, and S. Lloyd, arXiv: 1905.10415.

  517. T. Peng, A. W. Harrow, M. Ozols, and X. Wu, Phys. Rev. Lett. 125, 150504 (2020), arXiv: 1904.00102.

    ADS  Google Scholar 

  518. C. Ying, B. Cheng, Y. Zhao, H.-L. Huang, Y.-N. Zhang, M. Gong, Y. Wu, S. Wang, F. Liang, J. Lin, Y. Xu, H. Deng, H. Rong, C.-Z. Peng, M.-H. Yung, X. Zhu, and J.-W. Pan, arXiv: 2207.14142.

  519. H. L. Huang, A. K. Goswami, W. S. Bao, and P. K. Panigrahi, Sci. China-Phys. Mech. Astron. 61, 060311 (2018), arXiv: 1706.09489.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He-Liang Huang, Xiaoming Sun, Wan-Su Bao or Gui-Lu Long.

Additional information

He-Liang Huang acknowledges support from the Youth Talent Lifting Project (Grant No. 2020-JCJQ-QT-030), the National Natural Science Foundation of China (Grant Nos. 11905294, and 12274464), the China Postdoctoral Science Foundation, and the Open Research Fund from State Key Laboratory of High Performance Computing of China (Grant No. 201901-01). Chu Guo acknowledges support from the National Natural Science Foundation of China (Grant Nos. 11805279, 12074117, 61833010, and 12061131011). Guojing Tian acknowledges support from the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the National Natural Science Foundation of China (Grant Nos. 61832003, 61872334, and 61801459). Shi-Jie Wei acknowledges the National Natural Science Foundation of China (Grant No. 12005015). Gui-Lu Long acknowledges the National Natural Science Foundation of China (Grant Nos. 11974205, and 11774197), the National Key Research and Development Program of China (Grant No. 2017YFA0303700), and the Key Research and Development Program of Guangdong Province (Grant No. 2018B030325002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HL., Xu, XY., Guo, C. et al. Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation. Sci. China Phys. Mech. Astron. 66, 250302 (2023). https://doi.org/10.1007/s11433-022-2057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2057-y

Keywords

Navigation