Skip to main content
Log in

Tomographic Witnessing and Holographic Quantifying of Coherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The detection and quantification of quantum coherence play significant roles in quantum information processing. We present an efficient way of tomographic witnessing for both theoretical and experimental detection of coherence. We prove that a coherence witness is optimal if and only if all of its diagonal elements are zero. Naturally, we obtain a bona fide homographic measure of coherence given by the sum of the absolute values of the real and the imaginary parts of the non-diagonal entries of a density matrix, together with its interesting relations with other coherence measures like \(l_1\) norm coherence and robust of coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium : Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017). arXiv:quant-ph/1609.02439

  2. Hu, M.-L., Hu, X., Wang, J.-C., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Huang, Z., Situ, H.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)

    Article  ADS  Google Scholar 

  4. Huang, Z., Situ, H.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quant. Inform. Proc. 16, 222 (2017)

  5. Huang, Z., Situ, H.: Quantum coherence behaviors of fermionic system in non-inertial frame. Quant. Inform. Proc. 17, 95 (2018)

  6. Augusiak, R., Bae, J., Czekaj, Ł., Lewenstein, M.: On structural physical approximations and entanglement breaking maps. J. Phys. A 44, 185308 (2011)

  7. Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)

  8. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  9. Ren, H., Lin, A., He, S., Hu, X.: Quantitative coherence witness for finite dimensional states. Ann. Phys. 387, 281–289 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Nie, Y.-Q., Zhou, H., Guan, J.-Y., Zhang, Q., Ma, X., Zhang, J., Pan, J.-W.: Quantum coherence witness with untrusted measurement devices. Phys. Rev. Lett. 123, 090502 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang, Y.-T., Tang, J.-S., Wei, Z.-Y., Yu, S., Ke, Z.-J., Xu, X.-Y., Li, C.-F., Guo, G.-C.: Directly measuring the degree of quantum coherence using interference fringes. Phys. Rev. Lett. 118, 020403 (2017)

  12. Zheng, W., Ma, Z., Wang, H., Fei, S.-M., Peng, X.: Experimental demonstration of observability and operability of robustness of coherence. Phys. Rev. Lett. 120, 230504 (2018)

    Article  ADS  Google Scholar 

  13. Ringbauer, M., Bromley, T.R., Cianciaruso, M., Lami, L., Sarah Lau, W.Y., Adesso, G., White, A.G., Fedrizzi, A., Piani, M.: Certification and quantification of multilevel quantum coherence. Phys. Rev. X 8, 041007 (2018)

    Google Scholar 

  14. Ma, J., Hakande, A., Yuan, X., Ma, X.: Coherence as a resource for source-independent quantum random-number generation. Phys. Rev. A 99, 022328 (2019)

    Article  ADS  Google Scholar 

  15. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  16. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  17. Fang, K., Wang, X., Lami, L., Regula, B., Adesso, G.: Probabilistic distillation of quantum coherence. Phys. Rev. Lett. 121, 070404 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  19. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Du, S., Bai, S., Qi, X.: Coherence measures and optimal conversion for coherence states. Quantum Inf. Comput. 15, 15 (2015)

  21. Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A Math. Theor. 50, 285301 (2017)

    Article  MathSciNet  Google Scholar 

  22. Bu, K.F., Singh, U., Fei, S.M., Pati, A.K., Wu, J.D.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Jin, Z.-X., Fei, S.-M.: Quantifying quantum coherence and nonclassical correlation based on Hellinger distance. Phys. Rev. A 97, 062342 (2018)

    Article  ADS  Google Scholar 

  24. Xi, Z., Yuwen, S.: Coherence measure: Logarithmic coherence number. Phys. Rev. A 99, 022340 (2019)

    Article  ADS  Google Scholar 

  25. Lewenstein, M., Kraus, B., Cirac, J.I., Horodecki, P.: Optimization of entanglement witnesses. Phys. Rev. A 62, 052310 (2000)

    Article  ADS  Google Scholar 

  26. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Edwards, R.E.: Functional Analysis, Theory and Application. Holt, Rinehart and Winston. New York (1965)

    MATH  Google Scholar 

  29. Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Complete family of separability criteria. Phys. Rev. A 69, 022308 (2004)

    Article  ADS  Google Scholar 

  30. Gurvits, L.: Classical complexity and quantum entanglementC. J. Comput. Syst. Sci. 69, 448 (2004)

    Article  Google Scholar 

  31. Hou, J., Guo, Y.: When different entanglement witnesses detect the same entangled states. Phys. Rev. A 82, 052301 (2010)

    Article  ADS  Google Scholar 

  32. Christian, R.: Expression of a Tensor Commutation Matrix in Terms of the Generalized Gell-Mann Matrices. Int. J. Math. Math. Sci. 41, 20672 (2007)

  33. Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A Math. Theor. 41, 235303 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Qudit quantum-state tomography. Phys. Rev. A 66, 012303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. James, D.F.V., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

  36. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Zi-Wen Liu, Xiaoqi Zhou, Xiao Yuan, Tristan Farrow, Jinzhao Sun, Zong Wang and Gang-Gang Cao for helpful discussions, especially Paul Kairys for pointing out the mistakes in the proof of Lemma 1 and Theorem 3 in the original manuscript. Wang thanks Vlatko Vedral for his kind hospitality at University of Oxford where part of this work was initiated when Wang was there as a visiting scholar. This work is supported by the National Natural Science Foundation of China under Grant Nos. 62072119, 61672007, 11675113 and 12075159, Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020A1515011180, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (Grant Nos. SIQSE202005, SIQSE202001), Natural Science Foundation of Shanghai (Grant No. 20ZR1426400), the Key Project of Beijing Municipal Commission of Education (Grant No. KZ201810028042), Beijing Natural Science Foundation (Z190005), the Academician Innovation Platform of Hainan Province, and Academy for Multidisciplinary Studies, Capital Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bang-Hai Wang, Si-Qi Zhou, Zhihao Ma or Shao-Ming Fei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Corollary 1

(If) For all \(\rho \in D_{W_1}\) we have that \(0>tr(W_1\rho )= (1-\epsilon )tr(W_2\rho )+\epsilon tr(P\rho )\), which implies \(tr(W_2\rho )<0\) and hence \(\rho \in D_{W_2}\).

(Only if) We have \(D_{W_1}\subseteq D_{W_2}\) if \(W_2\) is finer than \(W_1\). If \(D_{W_1}=D_{W_2}\), then Lemma 1 (e) gives rise to that \(W_1=W_2\) (i.e., \(\epsilon =0\)). If \(D_{W_1}\subset D_{W_2}\), we have \(W_1 \ne W_2\) due to \(D_{W_1}\ne D_{W_2}\) by using Lemma 1 (e). Hence \(tr(W_2\rho )\ne tr(W_1\rho )\). For all \(\rho \in D_{W_1}\), we have \(tr(W_1\rho )<0\). Combining with Lemma 1 (b), we get that \(tr(W_2\rho )<tr(W_1\rho )\) and \(\xi > 1\). Denote \(P=(\xi -1)^{-1}(\xi W_1-W_2)\) and \(\epsilon =1-1/\xi >0\). We have that \(W_1=(1-\epsilon )W_2+\epsilon P\). It only remains to be shown that \(P\ge 0\). But this follows from Lemma 1 (a-c) and the definition of \(\xi \). One easily verifies that P is either not finer than \(W_1\) or it is incoherent. \(\Box \)

1.2 Proof of Corollary 2

(If) According to Corollary 1, there is no coherence witness which is finer than W. Therefore, W is optimal.

(Only if) If \(W'\) is a coherence witness, then according to Corollary 1 W is not optimal. \(\Box \)

1.3 Proof of Theorem 2

Clearly, \(W_{\rho }\) is Hermitian and not positive. The diagonal elements of \(W_{\rho }\) are 0, and \(tr(W_{\rho }\delta )\ge 0\) (factually \(tr(W_{\rho }\delta )=0\)) for any incoherent state \(\delta \).

Since \(\sum _{i=0}^{d-1}\langle i|\rho |i\rangle |i\rangle \langle i|\) is a matrix with the same diagonal elements as \(\rho \) and other elements 0, we have \(tr(\rho ^2)>tr(\rho \sum _{i=0}^{d-1}\langle i|\rho |i\rangle |i\rangle \langle i|)\) and

$$ tr(\rho W_{\rho })=-tr(\rho ^2)+tr(\rho \sum _{i=0}^{d-1}\langle i|\rho |i\rangle |i\rangle \langle i|)<0. $$

\(\square \)

1.4 Proof of Theorem 3

A proper coherence measure \(\mathscr {C}(\rho )\) for a quantum state \(\rho \) should satisfy the following conditions:

  1. (C1)

    Nonnegativity. \(\mathscr {C}(\rho )\ge 0\) for any quantum state \(\rho \), and \(\mathscr {C}(\rho )=0\) if and only if \(\rho \) is an incoherent state.

  2. (C2a)

    Monotonicity. \(\mathscr {C}(\rho )\ge \mathscr {C}(\Phi (\rho ))\) for all incoherent completely positive and trace-preserving (ICPTP) maps \(\Phi (\rho )=\sum _n \hat{K}_n\rho \hat{K}_n^\dag \), where \(\{\hat{K}_n\}\) is a set of Kraus operators, \(\sum _n\hat{K}_n^\dag \hat{K}_n=\mathbb {I}\) and \(\hat{K}_n\mathcal {I}\hat{K}_n^\dag \subset \mathcal {I}\).

  3. (C2b)

    Strong monotonicity (under selective measurements on average). \(\mathscr {C}(\rho )\ge \sum _np_n\mathscr {C}(\rho _n)\), where \(\rho _n=\frac{\hat{K}_n\rho \hat{K}_n^\dag }{p_n}\), \(p_n=tr(\hat{K}_n\rho \hat{K}_n^\dag )\), \(\sum _n\hat{K}_n^\dag \hat{K}_n=\mathbb {I}\) and \(K_n\mathcal {I}K_n^\dag \subset \mathcal {I}\).

  4. (C3)

    Convexity. \(\sum _np_n \mathscr {C}(\rho _n)\ge \mathscr {C}(\sum _n p_n\rho _n)\) for any ensemble of \(\{p_n,\rho _n\}\) of a state \(\rho \).

For the convinience of proof, we define a so-called holographic matrix norm. Denote \(M_n\) the \(n\times n\) complex matrices \(M_{n,n}(C)\). We define the holographic norm of \(A\in M_n\) by

$$\begin{aligned} \parallel A\parallel _h=\sum _{l,m=1}^n|a_{lm}^R|+\sum _{l,m=1}^n|a_{lm}^I|, \end{aligned}$$
(15)

where \(a_{lm}^R\) and \(a_{lm}^I\) are the real and the imaginary parts of \(a_{lm}\), respectively. We clarify that (15) is not a true matrix norm but a pseudo matrix norm. Recall that a matrix norm \(\Vert \cdot \Vert \) is a function satisfying the following properties: for \(A,B\in M_n\),

$$\begin{aligned}&\text{(1) }&\Vert A\Vert \ge 0,~ \Vert A\Vert =0 \text{ iff } A=0 \text{(Nonnegative) } \\&\text{(2) }&\Vert c A\Vert =|c|\Vert A\Vert \text{ for } \text{ all } \text{ complex } \text{ c } \text{(Homoheneous) }\\&\text{(3) }&\Vert A+B\Vert \le \Vert A\Vert +\Vert B\Vert \text{(Triangle } \text{ inequality) } \\&\text{(4) }&\Vert A B\Vert \le \Vert A\Vert \Vert B\Vert \text{(Submultiplicative). } \end{aligned}$$

One can prove that \(\Vert A\Vert _{h}\) defined in (15) satisfies the properties (1), (3) and (4), as well as the modified property (2a): \(\Vert c A\Vert _{h}=|c|\Vert A\Vert _{h}\) for all real and pure imaginary numbers c, but not for arbitrary complex scalars c. We remark that we do not use this property for arbitrary complex scalars c in our proof. We call \(\Vert A\Vert _{h}\) a pseudo matrix norm.

Properties (1), (2a) and (3) are easy to prove. We prove the property (4) as follows:

$$\begin{aligned} \Vert AB\Vert _{h}\le & {} \sum _{l,m=1}^{n}\left| \left( \sum _{j=1}^{n} a_{lj}b_{jm}\right) ^{R}\left| +\sum _{l,m=1}^{n}\right| \left( \sum _{j=1}^{n}a_{lj}b_{jm}\right) ^{I}\right| \\= & {} \sum _{l,m=1}^{n}\left| \sum _{j=1}^{n}\left( a_{lj}^{R} b_{jm}^{R}-a_{lj}^{I}b_{jm}^{I}\right) \left| +\sum _{l,m=1}^{n}\right| \sum _{j=1}^{n}\left( a_{lj}^{R}b_{jm}^{I}+a_{lj}^{I}b_{jm}^{R}\right) \right| \\\le & {} \sum _{l,m=1}^{n}\sum _{j=1}^{n}(|a_{lj}^{R}| |b_{jm}^{R}|+|a_{lj}^{I}| |b_{jm}^{I}|+|a_{lj}^{R}||b_{jm}^{I}|+|a_{lj}^{I}||b_{jm}^{R}|)\\= & {} \sum _{l,m=1}^{n}\sum _{j=1}^{n} (|a_{lj}^{R}|+ |a_{lj}^{I}|)(|b_{jm}^{R}|+|b_{jm}^{I}|)\\\le & {} \left( \sum _{l,j=1}^{n}(|a_{lj}^{R}|+|a_{lj}^{I}|)\right) \left( \sum _{j,m=1}^{n}(|b_{jm}^{R}|+|b_{jm}^{I}|)\right) \nonumber \\= & {} \Vert A\Vert _{h}\Vert B\Vert _{h}. \end{aligned}$$

Now we prove that the holographic measure of coherence \(\mathscr {C}_h(\rho )\) satisfies the required conditions.

  1. (C1)

    Obviously, \(\mathscr {C}_{h}(\rho )\ge 0\) for any quantum state \(\rho \) and \(\mathscr {C}_{h}(\rho )=0\) if and only if \(\rho \) is incoherent.

  2. (C2b)

    A general state can be written as \(\rho =\rho ^R+i\rho ^I\), where \(\rho ^R\) and \(\rho ^I\) are the real and imaginary parts of \(\rho \), respectively. The holographic norm of coherence of \(\rho \) can be written as

    $$\begin{aligned} \mathscr {C}_{h}(\rho )={\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|[\rho ^R]_{i,j}|+{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|[\rho ^I]_{i,j}|. \end{aligned}$$

    Therefore, we have

    $$\begin{aligned} \sum _np_n\mathscr {C}_{h}({\rho }_n)= & {} \sum _{n}p_{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}\bigg (|[\rho _{n}^{R}]_{i,j}|+|[\rho _{n}^{I}]_{i,j}|\bigg )\nonumber \\= & {} \sum _{n}p_{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|[\rho _{n}^{R}]_{i,j}|+\sum _{n}p_{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|[\rho _{n}^{I}]_{i,j}|\nonumber \\= & {} \sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|p_{n}[\rho _{n}^{R}]_{i,j}|+\sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|p_{n}[\rho _{n}^{I}]_{i,j}|\nonumber \\= & {} \sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|[\hat{K}_{n}\rho _{n}^{R}\hat{K}_{n}^{\dag }]_{i,j}|+\sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|[\hat{K}_{n}\rho _{n}^{I}\hat{K}_{n}^{\dag }]_{i,j}|\nonumber \\= & {} \sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|\sum _{k,l}[\hat{K}_{n}]_{i,k}[\rho _{n}^{R}]_{k,l}[\hat{K}_{n}^{\dag }]_{l,j}|\nonumber \\&\quad +\sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|\sum _{k,l}[\hat{K}_{n}]_{i,k}[\rho _{n}^{I}]_{k,l}[\hat{K}_{n}^{\dag }]_{l,j}|. \end{aligned}$$
    (16)

Note that for \(k=l\) in (16), we have \(\sum _{k}[\hat{K}_{n}]_{i,k}\rho _{k,k}^{R}[\hat{K}_{n}^{\dag }]_{k,j}=\sum _{k}\langle i|\hat{K}_{n}|k\rangle \rho _{k,k}^{R}\langle k|\hat{K}_{n}^{\dag }|j\rangle =\langle i|\hat{K}_{n}\Delta (\rho ^R)\hat{K}_{n}^{\dag }|j\rangle \), where \(\Delta (\rho ^R)=\sum _{k}\rho _{k,k}^{R}|k\rangle \langle k|\). Due to the fact that \(\Delta (\rho ^{R})\in \mathcal {I}\) and \(\hat{K}_{n} \Delta (\rho ^{R}) \hat{K}_{n}^{\dagger }\in \mathcal {I}\), we obtain \(\sum _{k}[\hat{K}_{n}]_{i,k}\rho _{k,k}^{R}[\hat{K}_{n}^{\dag }]_{k,j}=\delta _{i,j}(\hat{K}_{n}\Delta (\rho ^R)\hat{K}_{n}^{\dag })\). Hence, for the case \(i\ne j\), we only need to consider the case of \(k\ne l\). Then the term of the real part in (16) can be written as

$$\begin{aligned}&\sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|\sum _{k, l}[\hat{K}_{n}]_{i, k}[\rho _{n}^{R}]_{k, l}[\hat{K}_{n}^{\dag }]_{l, j}|\nonumber \\&\quad =\sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|{\sum }{\begin{array}{c} {k, l} \\ {k\ne l} \end{array}}[\hat{K}_{n}]_{i,k}[\rho _{n}^{R}]_{k,l}[\hat{K}_{n}^{\dag }]_{l,j}|\nonumber \\&\quad \le {\sum }{\begin{array}{c} {k, l} \\ {k\ne l} \end{array}}|[\rho _{n}^{R}]_{k,l}|\sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|[\hat{K}_{n}]_{i,k}[\hat{K}_{n}^{\dag }]_{l,j}|\nonumber \\&\quad \le {\sum }{\begin{array}{c} {k, l} \\ {k\ne l} \end{array}}|[\rho _{n}^{R}]_{k,l}|\sum _{n}\sum _{i}|[\hat{K}_{n}]_{i,k}|\sum _{j}|[\hat{K}_{n}^{\dag }]_{l,j}|. \end{aligned}$$
(17)

It is easy to see that

$$\begin{aligned}&|\sum _{n}\sum _{i}|[\hat{K}_{n}]_{i,k}|\sum _{j}|[\hat{K}_{n}^{\dag }]_{l,j}|\nonumber \\&\quad \le \sqrt{\sum _{n}(\sum _{i}|[\hat{K}_{n}]_{i,k}|)^{2}\sum _{m}(\sum _{j}|[\hat{K}_{n}^{\dag }]_{l,j}|)^{2}}. \end{aligned}$$
(18)

Since

$$\begin{aligned}&\sum _{n}(\sum _{i}|[\hat{K}_{n}]_{i,k}|)^{2}\nonumber \\&\quad =\sum _{n}\sum _{i,j}|[\hat{K}_{n}]_{i,k}[\hat{K}_{n}^{\dag }]_{k,j}|\nonumber \\&\quad =\sum _{n}\sum _{i,j}|\langle i|\hat{K}_{n}|k\rangle \langle k|\hat{K}_{n}^{\dag }|j\rangle |\nonumber \\&\quad =\sum _{n}\sum _{i}|\langle i|\hat{K}_{n}|k\rangle \langle k|\hat{K}_{n}^{\dag }|j\rangle |\nonumber \\&\quad =\sum _{n}\sum _{i}|\langle k|\hat{K}_{n}^{\dag }|j\rangle \langle i|\hat{K}_{n}|k\rangle |\nonumber \\&\quad =1, \end{aligned}$$
(19)

and similarly, \(\sum _{m}(\sum _{j}|[\hat{K}_{n}^{\dag }]_{l,j}|)^{2}=1\), we obtain

$$\begin{aligned} |\sum _{n}\sum _{i}|[\hat{K}_{n}]_{i,k}|\sum _{j}|[\hat{K}_{n}^{\dag }]_{l,j}|\le 1. \end{aligned}$$
(20)

From (17) and (20), we have

$$\begin{aligned} \sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|\sum _{k,l}[\hat{K}_{n}]_{i,k}[\rho _{n}^{R}]_{k,l}[\hat{K}_{n}^{\dag }]_{l,j}|\le {\sum }{\begin{array}{c} {k, l} \\ {k\ne l} \end{array}}|[\rho _{n}^{R}]_{k,l}|. \end{aligned}$$
(21)

In a similar way, one can aslo prove that

$$\begin{aligned} \sum _{n}{\sum }{\begin{array}{c} {i, j} \\ {i\ne j} \end{array}}|\sum _{k,l}[\hat{K}_{n}]_{i,k}[\rho _{n}^{I}]_{k,l}[\hat{K}_{n}^{\dag }]_{l,j}|\le {\sum }{\begin{array}{c} {k, l} \\ {k\ne l} \end{array}}|[\rho _{n}^{I}]_{k,l}|. \end{aligned}$$
(22)

Substituting (21) and (22) into (16), we get

$$\begin{aligned} \sum _{n}p_{n}\mathscr {C}_{h}(\rho _{n})\le {\sum }{\begin{array}{c} {k, l} \\ {k\ne l} \end{array}}|[\rho ^R]_{i,j}|+{\sum }{\begin{array}{c} {k, l} \\ {k\ne l} \end{array}}|[\rho ^I]_{i,j}|=\mathscr {C}_{h}(\rho ), \end{aligned}$$
(23)

which completes the proof.

  1. (C3)

    That the holographic norm of coherence may only decrease under mixing can be proved directly by the triangle inequality \(\parallel A+B\parallel _h\le \parallel A\parallel _h+\parallel B\parallel _h\) satisfied by the holographic norm.

  2. (C2a)

    By (C2b) and (C3), we have

    $$\begin{aligned} \mathscr {C}_h(\Phi ({\rho }))=\mathscr {C}_h(\sum _np_n{\rho }_n){\mathop {\le }\limits ^{\text {(C3)}}}\sum _np_n\mathscr {C}_h({\rho }_n) {\mathop {\le }\limits ^{\text {(C2b)}}}\mathscr {C}_{h}({\rho }), \end{aligned}$$

    where \({\rho }_n=\hat{K}_n{\rho } \hat{K}_n^\dag /p_n\) and \(p_n=tr(\hat{K}_n{\rho } \hat{K}_n^\dag )\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BH., Zhou, SQ., Ma, Z. et al. Tomographic Witnessing and Holographic Quantifying of Coherence. Quantum Inf Process 20, 181 (2021). https://doi.org/10.1007/s11128-021-03106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03106-z

Keywords

Navigation