Skip to main content
Log in

Measurement-induced entropy increment for quantifying genuine coherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Coherence is an important quantum resource in quantum information theory and can be quantified by entropy. We propose a class of genuine coherence quantity which is defined via the difference of entropies between the state \(\varrho \) and the dephased state \(\Delta [\varrho ]\). One can employ Tsallis-\(\alpha \) entropy and Rényi-\(\alpha \) entropy for this genuine coherence quantity and regard it as the measurement-induced entropy increment, since it can be related to the optimal average work in quantum thermodynamics with thermodynamics project measurements. We prove that the quantity is genuine coherence monotone but not genuine coherence measure. Furthermore, we present an improved coherence quantity, which can be proved as a coherence measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  3. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  5. Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)

    Article  ADS  Google Scholar 

  6. Gour, G., Müller, M.P., Narasimhachar, V., Spekkens, R.W., Halpern, Yunger, N. : The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015)

  7. Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)

    Article  ADS  Google Scholar 

  8. Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013)

    Article  MATH  ADS  Google Scholar 

  9. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  10. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  MATH  ADS  Google Scholar 

  11. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)

    Article  ADS  Google Scholar 

  12. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  13. Yadin, B., Vedral, V.: General framework for quantum macroscopicity in terms of coherence. Phys. Rev. A 93, 022122 (2016)

    Article  ADS  Google Scholar 

  14. Marvian, I., Spekkens, R.W.: How to quantify coherence: distinguishing speakable and unspeakable notions. Phys. Rev. A 94, 052324 (2016)

    Article  ADS  Google Scholar 

  15. de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A 50, 045301 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013)

    Article  MATH  ADS  Google Scholar 

  17. Hu, M.-L., Hu, X., Wang, J., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  18. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  19. Qi, X.-F., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A: Math. Theor. 50, 285301 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  21. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  22. Zhu, H.-J., Hayashi, M., Chen, L.: Axiomatic and operational connections between the \(l_{1}\)-norm of coherence and negativity. Phys. Rev. A 97, 022342 (2018)

    Article  MathSciNet  Google Scholar 

  23. Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence and asymmetry. Phys. Rev. A 93, 052331 (2016)

    Article  ADS  Google Scholar 

  24. Du, S., Bai, Z., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91, 052120 (2015)

    Article  ADS  Google Scholar 

  25. Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)

    Article  ADS  Google Scholar 

  26. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)

    Article  ADS  Google Scholar 

  27. Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93, 032326 (2016)

    Article  ADS  Google Scholar 

  28. Zhang, H.-J., Chen, B., Li, M., Fei, S.-M., Long, G.-L.: Estimation on geometric measure of quantum coherence. Commun. Theor. Phys. 67, 166–170 (2017)

    Article  MATH  ADS  Google Scholar 

  29. Bu, K.-F., Singh, U., Fei, S.-M., Pati, A.K., Wu, J.-D.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  30. Chen, B., Fei, S.-M.: Notes on modified trace distance measure of coherence. Quantum Inf. Process. 17, 107 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Xu, J.-W., Shao, L.-H., Fei, S.-M.: Coherence measures with respect to general quantum measurements. Phys. Rev. A 102, 012411 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  32. Zhao, M.-J., Ma, T., Wang, Z., Fei, S.-M., Pereira, R.: Coherence concurrence for X states. Quantum Inf. Process. 19, 104 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  33. Li, L., Wang, Q.-W., Shen, S.-Q., Li, M.: Quantum coherence measures based on Fisher information with applications. Phys. Rev. A 103, 012401 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  34. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  35. Borland, L., Plastino, A.R., Tsallis, C.: Information gain within nonextensive thermostatistics. J. Math. Phys. 39, 6490 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Furuichi, S., Yanagi, K., Kuriyama, K.: Fundamental properties of Tsallis relative entropy. J. Math. Phys. 45, 4868 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331, 593–622 (2014)

    Article  MATH  ADS  Google Scholar 

  39. Hayashi, M.: Quantum Information Theory. (Graduate Texts in Physics), Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  40. Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016)

    Article  Google Scholar 

  41. Vershynina, A.: Quantum coherence, discord and correlation measures based on Tsallis relative entropy. Quantum Inf. Comput. 20, 553–569 (2020)

    MathSciNet  Google Scholar 

  42. Kollas, N.K.: Optimization-free measures of quantum resources. Phys. Rev. A 97, 062344 (2018)

    Article  ADS  Google Scholar 

  43. Guo, M., Jin, Z., Li, B., Hu, B., Fei, S.-M.: Quantifying quantum coherence based on the Tsallis relative operator entropy. Quantum Inf. Process. 19, 382 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  44. Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94, 052336 (2016)

    Article  ADS  Google Scholar 

  45. Shao, L.-H., Li, Y., Luo, Y., Xi, Z.: Quantum coherence quantifiers based on the Rényi \(\alpha \)-relative entropy. Commun. Theor. Phys. 67, 631–6 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhu, H.-J., Hayashi, M., Chen, L.: Coherence and entanglement measures based on Rényi relative entropies. J. Phys. A: Math. Theor. 50, 475303 (2017)

    Article  ADS  Google Scholar 

  47. Kammerlander, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174 (2016)

    Article  ADS  Google Scholar 

  48. Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen die Determinanten-Theorie Sitzungsber. Berlin. Math. Gesellschaft 22, 9–20 (1923). [Issai Schur Collected Works (A. Brauer and H. Rohrbach, eds.), Vol. II. 416–427. Springer-Verlag, Berlin, (1973)]

  49. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics, Springer, Berlin (2010)

    MATH  Google Scholar 

  50. Hiai, F., Mosonyi, M., Petz, D., Bény, C.: Quantum f-divergences and error correction. Rev. Math. Phys. 23, 691 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  52. Yu, X.-D., Zhang, D.-J., Xu, G.-F., Tong, D.-M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)

    Article  ADS  Google Scholar 

  53. Mosonyi, M., Hiai, F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 57, 2474 (2011)

    Article  MATH  Google Scholar 

  54. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Camalet, Ming-Liang Hu, Xueyuan Hu for helpful discussions. This work is supported by the National Natural Science Foundation of China (Grants No. 11734015 and No. 61674110), and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjie Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Hu, J., Zhang, Z. et al. Measurement-induced entropy increment for quantifying genuine coherence. Quantum Inf Process 20, 261 (2021). https://doi.org/10.1007/s11128-021-03199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03199-6

Keywords

Navigation