Skip to main content
Log in

A novel dynamic quantum secret sharing in high-dimensional quantum system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper proposed a novel dynamic quantum secret sharing protocol in high-dimensional quantum system. Via transmitting the particles circularly and local unitary operations, the dealer and all agents can share the multi-particle entangled GHZ state in high-dimensional quantum system. The proposed protocol allows a dealer to share the predetermined dits without directly distributing any piece of shares to agents. To recover the secrets, dealer and all agents only need to perform the single-particle measurement operation and then implement the simple modular arithmetic operation according to their corresponding measurement results. Besides, in the proposed protocol, only a little fraction of entangled GHZ states are employed for eavesdropping check instead of lots of decoy (or detecting) particles used in previous protocols. Since the protocol is designed in the high-dimensional quantum system, it makes our protocol have higher resource capacity and better security in detecting the illegal eavesdropper than former protocols designed in two-dimensional quantum system. Security analyses indicate that the proposed protocol is immune to general attacks of intercept-and-resend, entangle-and-measure, collusion, and revoked a dishonest agent. Furthermore, the efficiency of proposed DQSS protocol in noise environment is deduced through quantum fidelity. The obtained results indicate that the efficiency of proposed protocol decreases with the increase in channel noise parameter and it has a quite different efficiency in four types of noise, i.e., dit-flip, d-phase-flip, amplitude-damping and depolarizing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge, England (2010)

    MATH  Google Scholar 

  2. Zidan, M.: A novel quantum computing model based on entanglement degree. Mod. Phys. Lett. B 34, 2050401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  3. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  5. Zidan, M., Abdel-Aty, A., Nguyene, D.M., et al.: A quantum algorithm based on entanglement measure for classifying multi-variate function into novel hidden classes. Results Phys. 15, 102549 (2019)

    Article  Google Scholar 

  6. Gordon, G., Rigolin, G.: Generalized teleportation protocol. Phys. Rev. A. 73, 042309 (2006)

    Article  ADS  Google Scholar 

  7. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A. 400, 97 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Zidan, M., Eleuch, H., Abdel-Aty, M.: Non-classical computing problems: Toward novel type of quantum computing problems. Results Phys. 21, 103536 (2021)

    Article  Google Scholar 

  9. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A, Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., 70, 1895 (1993).

  12. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chen, X.B., Sun, Y.R., Xu, G., et al.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (k, n)-threshold quantum state sharing. Inform. Sci. 501, 172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  15. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  16. Xu, G., Xiao, K., Li, Z.P., et al.: Controlled Secure Direct Communication Protocol via the Three-Qubit Partially Entangled Set of States. Cmc-Comput. Mater. Con. 58, 809–827 (2019)

    Google Scholar 

  17. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for super dense coding between multi-parties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  18. Gu, B., Li, C.Q., Xu, F., Chen, Y.L.: High-capacity three-party quantum secret sharing with superdense coding. Chin. Phys. B 18, 4690 (2009)

    Article  ADS  Google Scholar 

  19. Li, Y.C., Zhou, R.G., Xu, R.Q., Luo, J., Hu, W.W.: A quantum deep convolutional neural network for image recognition. Quantum Sci. Technol. 5, 044003 (2020)

    Article  ADS  Google Scholar 

  20. Li YC, Zhou RG, Xu RQ, J. Luo, S.X. Jiang, “A quantum mechanics-based framework for EEG signal feature extraction and classification,” in IEEE T. Emerg. Top Com. (2020), doi: https://doi.org/10.1109/TETC.2020.3000734.

  21. Li, Y.C., Zhou, R.G., Xu, R.Q., Hu, W.W., Fan, P.: Quantum algorithm for the nonlinear dimensionality reduction with arbitrary kernel. Quantum Sci. Technol. 6, 014001 (2020)

    Article  ADS  Google Scholar 

  22. Shamir, A.: How to share a secret. Commun. ACM. 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. G. R. Blakley, “Safeguarding cryptographic key,” In 1979 International Workshop on Managing Requirements Knowledge (MARK), New York, NY, USA, 1979, pp. 313-318https://doi.org/10.1109/MARK.1979.8817296

  24. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  25. Li, X., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  26. T. Gao, F.L. Yan, LI, and Y.C. Li, “Quantum secret sharing between m-party and n-party with six states,” Sci. China Ser. G Phys. Mech. Astron., 52, 1191–1202 (2009).

  27. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Quantum secret sharing between multiparty and multiparty with Bell states and Bell measurements. Sci. China-Phys. Mech. Astron. 53, 2238–2244 (2010)

    Article  ADS  Google Scholar 

  28. Tsai, C.W., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China-Phys. Mech. Astron. 55, 460–464 (2012)

    Article  ADS  Google Scholar 

  29. Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China-Phys. Mech. Astron. 55, 1828–1831 (2012)

    Article  ADS  Google Scholar 

  30. Yang, Y.G., Wen, Q.Y.: Sci. China Ser. G-Phys. Mech. Astron. 51(9), 1308–1315 (2008)

    Article  ADS  Google Scholar 

  31. Song, X.L., Liu, Y.B., Deng, H.Y., Xiao, Y.G.: Threshold quantum secret sharing between multi-party and multi-party. Sci. Rep. 7, 6366 (2017)

    Article  ADS  Google Scholar 

  32. Kartick, S., Hari, O.: Efficient quantum secret sharing without a trusted player. Quantum Inf. Process. 19, 73 (2020)

    Article  MathSciNet  Google Scholar 

  33. Wang, M.M., Chen, X.B., Yang, Y.X.: Quantum secret sharing for general access structures based on multiparticle entanglements. Quantum Inf. Process. 13, 429–443 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Mashhadi, S.: General secret sharing based on quantum Fourier transform. Quantum Inf. Process. 18, 114 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Jia, H.Y., Wen, Q.Y., Gao, F., Qin, S.J., Guo, F.Z.: Dynamic quantum secret sharing. Phys. Letts. A 376, 1035–1041 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331–344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12, 1991–1997 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  38. Liao, C.H., Yang, C.W., Hwang, T.: Comment on “Dynamic quantum secret sharing.” Quantum Inf. Process. 12, 3143–3147 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907–1916 (2014)

    Article  ADS  MATH  Google Scholar 

  40. Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)

    Article  MATH  Google Scholar 

  41. Liu, H., Ma, H., Wei, K., Yang, X., Qu, W., Dou, T., Chen, Y., Li, R., Zhu, W.: Multi-group dynamic quantum secret sharing with single photons. Phys. Lett. A 380, 2349–2353 (2016)

    Article  ADS  Google Scholar 

  42. Qin, H.W., Dai, Y.W.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quantum Inf. Process. 16, 64 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Song, Y., Li, Z.H., Li, Y.M.: A dynamic multiparty quantum direct secret sharing based on generalized GHZ states. Quantum Inf. Process. 17, 244 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Yang, C.W., Tsai, C.W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 19, 162 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  45. Vahid, K., Alireza, B., Saber, B.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)

    Article  Google Scholar 

  46. Wang, X., Liu, Y.M., Han, L.F., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication with high-dimensional quantum superdense coding. Int. J. Quantum Inf. 6, 1155–1163 (2008)

    Article  MATH  Google Scholar 

  47. Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multi-level mutually (un-)biased bases. Phys. Rev. A 78, 012344 (2008)

    Article  ADS  Google Scholar 

  48. Liu, Z.H., Chen, H.W., Xu, J.: High-dimensional deterministic multiparty quantum secret sharing without unitary operations. Quantum Inf. Process. 11, 1785–1795 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. M.M. Wang, L.T. Tian, and Z.G. Qu, “Efficient Multiparty Quantum Secret Sharing Scheme in High-dimensional System,” In International Conference on Cloud Computing and Security, Lecture Notes in Computer Science, pp: 23–31. Available: https://doi.org/https://doi.org/10.1007/978-3-030-00012-7_3.

  50. Qin, H.W., Tang, W., Tso, R.L.: Hierarchical Quantum Secret Sharing Based On Special High-dimensional Entangled State. IEEE J. Sel. Top. Quant. 26, 6600106 (2020)

    Article  Google Scholar 

  51. Vahid, K., Alireza, B., Saber, B.: Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 65, 052331 (2002)

    Article  Google Scholar 

  52. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  53. Pittenge, A.O., Rubin, M.H.: Mutually unbiased bases, generalized spin matrices and separability. Linear Algebra Appl. 390, 255 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  55. Fonseca, A.: High-dimensional quantum teleportation under noisy environments. Phys. Rev. A 100, 062311 (2019)

    Article  ADS  Google Scholar 

  56. Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A 41, 235303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author expresses his/her thanks to the people helping with this work, and acknowledges the valuable suggestions from the peer reviewers. This work is supported by the Shanghai Science and Technology Project in 2020 under Grant No.20040501500; the National Natural Science Foundation of China under Grant No. 61763014 and No. 62062035; the Science and technology research project of Jiangxi Provincial Education Department under Grant No. GJJ190297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Appendix A

Appendix A

Let us assume that Alice first prepares the generalized Bell state \(\left| {\psi \left( {0,0} \right)} \right\rangle = \frac{1}{\sqrt d }\sum\limits_{m = 0}^{d - 1} {\left| {m,m} \right\rangle_{12} }\), and transmits the second particle among all agents (Bob1, Bob2, …, Bobn) and herself. After each agent’s local unitary operation RSc, it would form a (n + 2)-particle generalized GHZ state \(\left| {\psi \left( {0,0,0, \cdots ,0} \right)} \right\rangle_{1,2,3, \cdots ,n + 2}\), and the whole operation can be expressed as:

$$ \left| {\psi \left( {0,0,0, \cdots ,0} \right)} \right\rangle_{1,2,3, \cdots ,n + 2} = \left[ {\prod\nolimits_{j = 3}^{n} {RS_{C} \left( {2,j} \right)} } \right]\left| {\psi \left( {0,0} \right)} \right\rangle_{12} \left| 0 \right\rangle^{ \otimes n} = \frac{1}{\sqrt d }\sum\limits_{m = 0}^{d - 1} {\left| {m,m,m, \cdots ,m} \right\rangle }_{1,2,3, \cdots ,n + 2} $$
(46)

where \(RS_{C} \left( {2,j} \right)\) represents the implementation of local unitary operation RSC on two qudits, and the second qudit and j-th qudit, respectively, act as the control qudit and target qudit.

When Alice performs local unitary operation LSC on two qudits (i.e., the first qudit and second qudit), where the first qudit acts control qudit and second qudit acts the target qudit, the above (n + 2)-qudit GHZ state would transform into following forms:

$$ \left| {\psi^{ * } } \right\rangle = \frac{1}{\sqrt d }\sum\limits_{m = 0}^{d - 1} {\left| {m,0,m, \cdots ,m} \right\rangle_{1,2,3, \cdots ,n + 2} } $$
(47)

Now, it is easy to find that second qudit in above quantum state \(\left| {\psi^{ * } } \right\rangle\) (i.e., particles in sequence ST) being quantum state \(\left| 0 \right\rangle\) has disentangled with other (n + 1) qudits. Thus, when Alice measures the second qudit in Z-basis, the remaining (n + 1) qudits transform into following GHZ state:

$$ \left| {\psi \left( {0,0, \cdots ,0} \right)} \right\rangle = \frac{1}{\sqrt d }\sum\limits_{m = 0}^{d - 1} {\left| {m,m, \cdots ,m} \right\rangle_{1,2,3, \cdots ,n + 1} } $$
(48)

Hence, when the generalized Hadamard transform Hd is performed on each qudit in state \(\left| {\psi \left( {0,0, \cdots ,0} \right)} \right\rangle_{1,2,3, \cdots ,n + 1}\), Eq. (48) would transform into following form:

$$ \begin{gathered} \, \left| {\Psi^{ * } \left( {0,0, \cdots ,0} \right)} \right\rangle = H_{d}^{{ \otimes \left( {n{ + }1} \right)}} \left| {\psi \left( {0,0, \cdots ,0} \right)} \right\rangle \hfill \\ \quad= \frac{1}{\sqrt d }\sum\limits_{m = 0}^{d - 1} {\left( {\frac{1}{\sqrt d }\sum\limits_{{s_{H} = 0}}^{d - 1} {w^{{ms_{H} }} } \left| {s_{H} } \right\rangle \times \frac{1}{\sqrt d }\sum\limits_{{s_{1} = 0}}^{d - 1} {w^{{ms_{1} }} } \left| {s_{1} } \right\rangle \times } \right.} \left. { \cdots \times \frac{1}{\sqrt d }\sum\limits_{{s_{n} = 0}}^{d - 1} {w^{{ms_{n} }} \left| {s_{n} } \right\rangle } } \right) \hfill \\ \quad= \frac{1}{{\sqrt {d^{n + 2} } }}\sum\limits_{{s_{H} ,s_{1} , \cdots ,s_{n} = 0}}^{d - 1} {\sum\limits_{m = 0}^{d - 1} {w^{{m\left( {s_{H} + s_{1} + \cdots + s_{n} } \right)}} \left| {s_{H} } \right\rangle \left| {s_{1} } \right\rangle } \cdots \left| {s_{n} } \right\rangle } \hfill \\ \quad= \frac{1}{{\sqrt {d^{n} } }}\sum\limits_{{\begin{array}{*{20}c} {s_{H} ,s_{1} , \cdots ,s_{n} = 0} \\ {s_{H} + s_{1} + \cdots + s_{n} \equiv 0\left( {mod \, d} \right)} \\ \end{array} }}^{d - 1} {\left| {s_{H} } \right\rangle \left| {s_{1} } \right\rangle \cdots \left| {s_{n} } \right\rangle } \hfill \\ \end{gathered} $$
(49)

The last equation in Eq. (49) can be further proved as follows:

Let us denote that \(S = \sum\nolimits_{m = 0}^{d - 1} {w^{km} }\) and accordingly denotes \(k = s_{H} + s_{1} + \cdots + s_{n}\), where \(w = e^{{{{2\pi i} \mathord{\left/ {\vphantom {{2\pi i} d}} \right. \kern-\nulldelimiterspace} d}}}\), then we can calculate the sum S as:

If \(k \ne 0 \, \left( {mod \, d} \right)\), then \(w = e^{{{{2\pi ik} \mathord{\left/ {\vphantom {{2\pi ik} d}} \right. \kern-\nulldelimiterspace} d}}} \ne 1\). Hence, the sum S is calculated as:

$$ S = \sum\limits_{m = 0}^{d - 1} {w^{mk} } = \sum\limits_{m = 0}^{d - 1} {e^{{\frac{2\pi ik}{d}m}} } = \frac{{1 * \left( {1 - e^{{\frac{2\pi ik}{d}d}} } \right)}}{{1 - e^{{\frac{2\pi ik}{d}}} }} = \frac{{1 * \left( {1 - e^{2\pi ik} } \right)}}{{1 - e^{{\frac{2\pi ik}{d}}} }} = 0 $$
(50)

In other case, if \(k \equiv 0 \, \left( {mod \, d} \right)\), then we have \(e^{{{{2\pi ikm} \mathord{\left/ {\vphantom {{2\pi ikm} d}} \right. \kern-\nulldelimiterspace} d}}} = e^{2\pi im} = 1\) for any \(m \in \left\{ {0, \, d - 1} \right\}\). Thus, the sum S is calculated as:

$$ S = \sum\limits_{m = 0}^{d - 1} {w^{mk} } = \sum\limits_{m = 0}^{d - 1} {e^{{\frac{2\pi ik}{d}m}} } = \sum\limits_{m = 0}^{d - 1} {e^{2\pi im} } = d $$
(51)

In summary, we have:

$$ S = \sum\limits_{m = 0}^{d - 1} {w^{{m\left( {s_{H} + s_{1} + \cdots + s_{n} } \right)}} } = \left\{ \begin{gathered} 0,s_{H} + s_{1} + \cdots + s_{n} \ne 0\left( {\bmod \;d} \right) \hfill \\ d,s_{H} + s_{1} + \cdots + s_{n} \equiv 0\left( {\bmod \;d} \right) \hfill \\ \end{gathered} \right. $$
(52)

Hence, based on Eq. (52), we can verify the last equation of above-mentioned Eq. (49). And accordingly, the correctness of previous mentioned Eq. (11) is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Zhou, RG., Li, X. et al. A novel dynamic quantum secret sharing in high-dimensional quantum system. Quantum Inf Process 20, 159 (2021). https://doi.org/10.1007/s11128-021-03103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03103-2

Keywords

Navigation