Skip to main content
Log in

Semi-quantum private comparison protocol of size relation with d-dimensional Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on \(d\)-dimensional Bell states, a new semi-quantum private comparison protocol is designed under the assistance of a semi-honest third party. Compared with the existing semi-quantum private comparison protocols, the presented semi-quantum private comparison protocol could compare the size relation between two classical participants’ secrets in one-time execution without divulging their secrets. This could reduce the consumption of quantum resources and raise the efficiency of the proposed semi-quantum private comparison protocol. The correctness of the suggested protocol is validated and further supported by giving some examples. The performance of this protocol against external attacks and internal attacks has also been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  3. Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284, 2412–2414 (2011)

    Article  ADS  Google Scholar 

  4. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  Google Scholar 

  5. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877–885 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53, 2167–2176 (2014)

    Article  MathSciNet  Google Scholar 

  7. Xu, L., Zhao, Z.W.: Quantum private comparison protocol based on the entanglement swapping between χ+ state and W-class state. Quantum Inf. Process. 16, 302 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chang, Y., Zhang, W.B., Zhang, S.B., Wang, H.C., Yan, L.L., Han, G.H., Sheng, Z.W., Huang, Y.Y., Suo, W., Xiong, J.X.: Quantum private comparison of equality based on five-particle cluster state. Commun. Theor. Phys. 66, 621–628 (2016)

    Article  ADS  Google Scholar 

  9. Zha, X.W., Yu, X.Y., Cao, Y., Wang, S.K.: Quantum private comparison protocol with five-particle cluster states. Int. J. Theor. Phys. 57, 3874–3881 (2018)

    Article  Google Scholar 

  10. Ji, Z.X., Zhang, H.G., Fan, P.R.: Two-party quantum private comparison protocol with maximally entangled seven-qubit state. Mod. Phys. Lett. A 34, 1950229 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lang, Y.F.: Quantum gate-based quantum private comparison. Int. J. Theor. Phys. 59, 833–840 (2020)

    Article  MathSciNet  Google Scholar 

  12. Ji, Z.X., Fan, P.R., Zhang, H.G., Wang, H.Z.: Greenberger-Horne-Zeilinger-based quantum private comparison protocol with bit-flipping. Phys. Scripta 96, 015103 (2021)

    Article  ADS  Google Scholar 

  13. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  14. Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12, 559–568 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Luo, Q.B., Yang, G.W., She, K., Niu, W.N., Wang, Y.Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13, 2343–2352 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14, 4225–4235 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf. Process. 17, 252 (2018)

    Article  ADS  Google Scholar 

  18. Liu, W., Wang, Y.B., Sui, A.N., Ma, M.Y.: Quantum protocol for millionaire problem. Int. J. Theor. Phys. 58, 2106–2114 (2019)

    Article  MathSciNet  Google Scholar 

  19. Cao, H., Ma, W.P., Lu, L.D., He, Y.F., Liu, G.: Multi-party quantum privacy comparison of size based on d-level GHZ states. Quantum Inf. Process. 18, 287 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Xiang, Y., Liu, J., Bai, M.Q., Yang, X., Mo, Z.W.: Limited resource semi-quantum secret sharing based on multi-level systems. Int. J. Theor. Phys. 58, 3852–3862 (2019)

    Article  MathSciNet  Google Scholar 

  22. Yan, L.L., Zhang, S.B., Chang, Y., Sheng, Z.W., Sun, Y.H.: Semi-quantum key agreement and private comparison protocols using Bell states. Int. J. Theor. Phys. 58, 3852–3862 (2019)

    Article  MathSciNet  Google Scholar 

  23. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)

    Article  MathSciNet  Google Scholar 

  24. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. https://arxiv.org/abs/1607.07961 (2016)

  25. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16, 1850047 (2018)

    Article  MathSciNet  Google Scholar 

  26. Lang, Y.F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57, 3048–3055 (2018)

    Article  MathSciNet  Google Scholar 

  27. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57, 3819–3834 (2018)

    Article  MathSciNet  Google Scholar 

  28. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18, 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. Yan, L.L., Chang, Y., Zhang, S.B., Wang, Q.R., Sheng, Z.W., Sun, Y.H.: Measure-resend semi-quantum private comparison scheme using GHZ class states. Comput. Mater. Contin. 61, 877–887 (2019)

    Article  Google Scholar 

  30. Jiang, L.Z.: Semi-quantum private comparison based on Bell states. Quantum Inf. Process. 19, 180 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. Liu, Z.H., Chen, H.W., Xu, J., Liu, W.J., Li, Z.Q.: High-dimensional deterministic multiparty quantum secret sharing without unitary operations. Quantum Inf. Process. 11, 1785–1795 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ding, Y.H., Bacco, D., Dalgaard, K., Cai, X.L., Zhou, X.Q., Rottwitt, K., Oxenlowe, L.K.: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 3, 25 (2017)

    Article  ADS  Google Scholar 

  33. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Hu, X.M., Xing, W.B., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C., Erker, P., Huber, M.: Efficient generation of high-dimensional entanglement through multipath down-conversion. Phys. Rev. Lett. 125, 090503 (2020)

    Article  ADS  Google Scholar 

  35. Shi, Z.M., Mirhosseini, M., Margiewicz, J., Malik, M., Rivera, F., Zhu, Z.Y., Boyd, R.W.: Scan-free direct measurement of an extremely high-dimensional photonic state. Optica 2, 388–392 (2015)

    Article  ADS  Google Scholar 

  36. Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6, 1195–1202 (2008)

    Article  Google Scholar 

  37. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13, 2417–2436 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61871205 and 61561033), the Major Academic Discipline and Technical Leader of Jiangxi Province (No. 20162BCB22011) and the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (No. 2019BDKFJJ001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Gong.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, NR., Xu, QD., Du, NS. et al. Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Inf Process 20, 124 (2021). https://doi.org/10.1007/s11128-021-03056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03056-6

Keywords

Navigation