Skip to main content
Log in

Controlled phase gate and Grover’s search algorithm on two distant NV-centers assisted by an NAMR

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our gate is completed by using resonant operations between NV-centers and the NAMR, and single-qubit operations on the NV-center, which let the gate to be achieved within a short time with a high fidelity. To study the performance of the gate for universal quantum computation, we simulate a two-qubit Grover’s search algorithm on the NV-centers with a fidelity of \(98.46\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Wei, S.J., Long, G.L.: Duality quantum computer and the efficient quantum simulations. Quantum Inf. Proc. 15, 1189 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    ADS  Google Scholar 

  4. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)

    ADS  Google Scholar 

  5. Haack, G., Helmer, F., Mariantoni, M., Marquardt, F., Solano, E.: Resonant quantum gates in circuit quantum electrodynamics. Phys. Rev. B 82, 024514 (2010)

    ADS  Google Scholar 

  6. Tao, M.J., Hua, M., Ai, Q., Deng, F.G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)

    ADS  Google Scholar 

  7. Yang, C.P., Zheng, S.B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 82, 062326 (2010)

    ADS  Google Scholar 

  8. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    ADS  Google Scholar 

  9. Poyatos, J.F., Cirac, J.I., Zoller, P.: Quantum gates with “Hot” trapped ions. Phys. Rev. Lett. 81, 1322 (1998)

    ADS  Google Scholar 

  10. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)

    ADS  Google Scholar 

  12. Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature (London) 393, 344 (1998)

    ADS  Google Scholar 

  13. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    ADS  Google Scholar 

  14. Xin, T., Pedernales, J.S., Solano, E., Long, G.L.: Entanglement measures in embedding quantum simulators with nuclear spins. Phys. Rev. A 97, 022322 (2018)

    ADS  Google Scholar 

  15. Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Oark, D., Piermarochi, C., Sham, J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2003)

    ADS  Google Scholar 

  16. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)

    ADS  Google Scholar 

  17. Nemot, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    ADS  Google Scholar 

  18. Gao, Y.P., Cao, C., Wang, T.J., Zhang, Y., Wang, C.: Cavity-mediated coupling of phonons and magnons. Phys. Rev. A 96, 023826 (2017)

    ADS  Google Scholar 

  19. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    ADS  Google Scholar 

  20. Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature (London) 431, 159 (2004)

    ADS  Google Scholar 

  21. Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)

    ADS  Google Scholar 

  22. Ye, B.L., Zheng, Z.F., Yang, C.P.: Multiplex-controlled phase gate with qubits distributed in a multicavity system. Phys. Rev. A 97, 062336 (2018)

    ADS  Google Scholar 

  23. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    ADS  Google Scholar 

  24. Hong, Z.P., Liu, B.J., Cai, J.Q., Zhang, X.D., Hu, Y., Wang, Z.D., Xue, Z.Y.: Implementing universal nonadiabatic holonomic quantum gates with transmons. Phys. Rev. A 97, 022332 (2018)

    ADS  Google Scholar 

  25. Xu, Y., Cai, W., Ma, Y., Mu, X., Hu, L., Chen, T., Wang, H., Song, Y.P., Xue, Z.Y., Yin, Z.Q., Sun, L.: Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit. Phys. Rev. Lett. 121, 110501 (2018)

    ADS  Google Scholar 

  26. Feng, W., Zhang, C., Wang, Z., Qin, L.P., Li, X.Q.: Gradual partial-collapse theory for ideal nondemolition longitudinal readout of qubits in circuit QED. Phys. Rev. A 98, 022121 (2018)

    ADS  Google Scholar 

  27. Hua, M., Tao, M.J., Alsaedi, A., Hayat, T., Deng, F.G.: Universal distributed quantum computing on superconducting qutrits with dark photons. Annalen der Physik 530, 1700402 (2018)

    ADS  MathSciNet  Google Scholar 

  28. Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004)

    ADS  Google Scholar 

  29. Yang, W.L., Yin, Z.Q., Hu, Y., Feng, M., Du, J.F.: High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation. Phys. Rev. A 84, 010301(R) (2011)

    ADS  Google Scholar 

  30. Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008)

    ADS  Google Scholar 

  31. Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009)

    ADS  Google Scholar 

  32. Ekinci, K.L., Roukes, M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)

    ADS  Google Scholar 

  33. Verbridge, S.S., Craighead, H.G., Parpia, J.M.: A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl. Phys. Lett. 92, 013112 (2008)

    ADS  Google Scholar 

  34. Rabl, P., Cappellaro, P., Dutt, M.V.G., Jiang, L., Maze, J.R., Lukin, M.D.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302(R) (2009)

    ADS  Google Scholar 

  35. Wrachtrup, J.: Schrödinger’s cat is still alive. Nat. Phys. 5, 248 (2009)

    Google Scholar 

  36. Xu, Z.Y., Hu, Y.M., Yang, W.L., Feng, M., Du, J.F.: Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantileve. Phys. Rev. A 80, 022335 (2009)

    ADS  Google Scholar 

  37. Zhou, L.G., Wei, L.F., Gao, M., Wang, X.B.: Strong coupling between two distant electronic spins via a nanomechanical resonator. Phys. Rev. A 81, 042323 (2010)

    ADS  Google Scholar 

  38. Kolkowitz, S., Jayich, A.C.B., Unterreithmeier, Q.P., Bennett, S.D., Rabl, P., Harris, J.G.E., Lukin, M.D.: Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603 (2012)

    ADS  Google Scholar 

  39. Pigeau, B., Rohr, S., de Lépinay, L.M., Gloppe, A., Jacques, V., Arcizet, O.: Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system. Nat. Commun. 6, 8603 (2015)

    ADS  Google Scholar 

  40. Li, X.X., Li, P.B., Ma, S.L., Li, F.L.: Preparing entangled states between two NV centers via the damping of nanomechanical resonators. Sci. Rep. 7, 14116 (2017)

    ADS  Google Scholar 

  41. Wang, Z.H., de Lange, G., Ristè, D., Hanson, R., Dobrovitski, V.V.: Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond. Phys. Rev. B 85, 155204 (2012)

    ADS  Google Scholar 

  42. Wang, H.J., Shin, C.S., Avalos, C.E., Seltzer, S.J., Budker, D., Pines, A., Bajaj, V.S.: Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond. Nat. Commun. 4, 1940 (2013)

    ADS  Google Scholar 

  43. Feng, Z.B.: Robust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centers. Phys. Rev. A 91, 032307 (2015)

    ADS  Google Scholar 

  44. LaHaye, M.D., Buu, O., Camarota, B., Schwab, K.C.: Approaching the quantum limit of a nanomechanical resonator. Science 304, 74 (2004)

    ADS  Google Scholar 

  45. Naik, A., Buu, O., LaHaye, M.D., Armour, A.D., Clerk, A.A., Blencowe, M.P., Schwab, K.C.: Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193 (2006)

    ADS  Google Scholar 

  46. Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature (London) 444, 75 (2006)

    ADS  Google Scholar 

  47. Sidles, J.A., Garbini, J.L., Bruland, K.J., Rugar, D., Züger, O., Hoen, S., Yannoni, C.S.: Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249 (1995)

    ADS  Google Scholar 

  48. Manson, N.B., Harrison, J.P., Sellars, M.J.: Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006)

    ADS  Google Scholar 

  49. Twamley, J., Barrett, S.D.: Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond. Phys. Rev. A 81, 241202(R) (2010)

    ADS  Google Scholar 

  50. Dobrovitski, V.V., Fuchs, G.D., Falk, A.L., Santori, C., Awschalom, D.D.: Quantum control over single spins in diamond. Annu. Rev. Condens. Matter Phys. 4, 23 (2013)

    ADS  Google Scholar 

  51. Chen, Q., Yang, W.L., Feng, M.: Controllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubits. Phys. Rev. A 86, 022327 (2012)

    ADS  Google Scholar 

  52. Chen, Q., Yang, W.L., Feng, M., Du, J.F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)

    ADS  Google Scholar 

  53. Retzker, A., Solano, E., Reznik, B.: Tavis–Cummings model and collective multiqubit entanglement in trapped ions. Phys. Rev. A 75, 022312 (2007)

    ADS  Google Scholar 

  54. Zhou, J.H., Liu, T., Feng, M., Yang, W.L., Chen, C.Y., Twamley, J.: Quantum phase transition in a driven Tavis–Cummings model. New J. Phys. 15, 123032 (2013)

    ADS  Google Scholar 

  55. Su, W.J., Yang, Z.B., Zhong, Z.R.: Arbitrary control of entanglement between two nitrogen-vacancy-center ensembles coupling to a superconducting-circuit qubit. Phys. Rev. A 97, 012329 (2018)

    ADS  Google Scholar 

  56. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012)

    ADS  Google Scholar 

  57. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234 (2013)

    ADS  Google Scholar 

  58. Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)

    ADS  Google Scholar 

  59. Bao, N., Bouland, A., Jordan, S.P.: Grover search and the no-signaling principle. Phys. Rev. Lett. 117, 120501 (2016)

    ADS  Google Scholar 

  60. Byrnes, T., Forster, G., Tessler, L.: Generalized Groveri’s algorithm for multiple phase inversion states. Phys. Rev. Lett. 120, 060501 (2018)

    ADS  Google Scholar 

  61. Tulsi, A.: Quantum search algorithm tailored to clause-satisfaction problems. Phys. Rev. A 91, 052322 (2015)

    ADS  Google Scholar 

  62. Matsuzaki, Y., Zhu, X., Kakuyanagi, K., Toida, H., Shimooka, T., Mizuochi, N., Nemoto, K., Semba, K., Munro, W.J., Yamaguchi, H., Saito, S.: Improving the lifetime of the nitrogen-vacancy-center ensemble coupled with a superconducting flux qubit by applying magnetic fields. Phys. Rev. A 91, 042329 (2015)

    ADS  Google Scholar 

  63. Bassett, L.C., Heremans, F.J., Yale, C.G., Buckley, B.B., Awschalom, D.D.: Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. Phys. Rev. Lett. 107, 266403 (2011)

    ADS  Google Scholar 

  64. Bernien, H., Childress, L., Robledo, L., Markham, M., Twitchen, D., Hanson, R.: Two-photon quantum interference from separate nitrogen vacancy centers in diamond. Phys. Rev. Lett. 108, 043604 (2012)

    ADS  Google Scholar 

  65. Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature (London) 514, 72 (2014)

    ADS  Google Scholar 

  66. Wang, Z.L., Zhong, Y.P., He, L.J., Wang, H., Martinis, J.M., Cleland, A.N., Xie, Q.W.: Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett. 102, 163503 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

M. Hua was supported by the National Natural Science Foundation of China under Grants Nos. 11704281 and 11647042. M. J. Tao was supported by the China Postdoctoral Science Foundation under Grant No. 2018M631438. H. R. Wei was supported by the National Natural Science Foundation of China under Grants No. 11604012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jie Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: single-qubit gates on the NV-center

Appendix: single-qubit gates on the NV-center

Here, we give the details for the construction of the single-qubit gates used in Sect. 4. The gates are achieved by applying the driving field on the NV-center. The Hamiltonian of the NV-center applied with the driving fields can be written as

$$\begin{aligned} H= & {} \omega _{g}\vert g\rangle \langle g\vert \!+\!\omega _{e}\vert e\rangle \langle e\vert +\!\frac{\Omega _{1}}{2}(\vert g\rangle \langle u\vert e^{i\omega _{1}t}\!+\!\vert u\rangle \langle g\vert e^{-i\omega _{1}t} + |e\rangle \langle u|e^{i\omega _{1}t}\!+\!|u\rangle \langle e|e^{-i\omega _{1}t}) \nonumber \\&\quad +\, \frac{\Omega _{2}}{2}(|g\rangle \langle u|e^{i\omega _{2}t}\!+\!|u\rangle \langle g|e^{-i\omega _{2}t} + |e\rangle \langle u|e^{i\omega _{2}t}\!+\!|u\rangle \langle e|e^{-i\omega _{2}t}), \end{aligned}$$
(A1)

where \(\Omega _{1}\left( \Omega _{2}\right) \) and \(\omega _{1}\left( \omega _{2}\right) \) are the Rabi frequency and the driving frequency of the driving field, respectively. \(\omega _{g}\left( \omega _{e}\right) \) is the transition frequency between states \(\vert u\rangle \) and \(\vert g\rangle \left( \vert e\rangle \right) \) of the+ NV-center.

Transforming H with a rotating frame

\(U=\exp \left( -i\omega _{1}t\vert g\rangle \langle g\vert -i\omega _{2}t\vert e\rangle \langle e\vert \right) \), we can obtain the effective Hamiltonian \(H_\mathrm{{eff}}\) of the NV-center as

$$\begin{aligned} H_\mathrm{{eff}}= & {} U^{\dagger }HU-iU^{\dagger }\dot{U} \nonumber \\= & {} \Delta _{g1}\vert g\rangle \langle g\vert +\Delta _{e2}\vert e\rangle \langle e\vert \!+\!\frac{\Omega _{1}}{2}(\vert g\rangle \langle u\vert \!+\!\vert u\rangle \langle g\vert \!+\!| e\rangle \langle u| e^{-i\Delta _{12}t}\!+\!| u\rangle \langle e| e^{i\Delta _{12}t}) \nonumber \\&\quad +\, \frac{\Omega _{2}}{2}( |e\rangle \langle u| + | u\rangle \langle e| + | g\rangle \langle u| e^{i\Delta _{12}t} + | u\rangle \langle g| e^{-i\Delta _{12}t}), \end{aligned}$$
(A2)

where \(\Delta _{g1}=\omega _{g}-\omega _{1},\Delta _{e2}=\omega _{e}-\omega _{2},\Delta _{12}=\omega _{1}-\omega _{2}\). By defining a ratio \(\Omega _{2}/\Omega _{1}=r~\left( r>0\right) \) and taking \(\omega _{g}=\omega _{1}\ll \omega _{e}=\omega _{2}\), one can obtain \(\frac{\Omega _{1}/2}{\Delta _{12}}\ll 1\) and \(\frac{\Omega _{2}/2}{\Delta _{12}}\ll 1\) to meet the rotating-wave approximation to omit the oscillation terms with high frequencies in Eq. (A2). Then, the Hamiltonian \(H_\mathrm{{eff}}\) is reduced to

$$\begin{aligned} H_\mathrm{{e}}= & {} \frac{\Omega _{1}}{2}\!\left( |g\rangle \langle u| + | u\rangle \langle g| \right) + \frac{k\Omega _{1}}{2}\left( | e\rangle \langle u| + | u\rangle \langle e|\right) . \end{aligned}$$
(A3)

Using the evolution operator \(U=\exp \left( -iH_\mathrm{{e}}t\right) \), the evolution of states \(\vert g\rangle \) and \(\vert e\rangle \) of the NV-center can be described by

$$\begin{aligned} \exp \!\left( -iH_\mathrm{{e}}t\right) \!\vert g\rangle \!\!= & {} \!\!-\frac{i\sin \left( \frac{1}{2}\Omega _{1}t\sqrt{k^{2}+1}\right) }{\sqrt{k^{2}+1}}\vert u\rangle +\frac{k^{2}\!+\!\cos \left( \frac{1}{2}\Omega _{1}t\sqrt{k^{2}+1}\right) }{k^{2}\!+\!1}\vert g\rangle \nonumber \\&\quad +\, \frac{k\left( -1\!+\!\cos \left( \frac{1}{2}\Omega _{1}t\sqrt{k^{2}+1}\right) \right) }{k^{2}\!+\!1}\vert e\rangle , \nonumber \\ \exp \!\left( \!-iH_\mathrm{{e}}t\right) \!\vert e\rangle \!\!= & {} \!\!-\frac{ik\sin \left( \frac{1}{2}\Omega _{1}t\sqrt{k^{2}+1}\right) }{\sqrt{k^{2}+1}}\vert u\rangle +\frac{k\!\left( \!-1\!\!+\!\cos \!\left( \!\frac{1}{2}\Omega _{1}\!t\sqrt{k^{2}\!+\!1}\right) \!\right) }{k^{2}\!\!+\!1}\vert g\rangle \nonumber \\&\quad +\, \frac{1\!\!+\!k^{2}\!\cos \!\left( \!\frac{1}{2}\Omega _{1}t\sqrt{k^{2}\!+\!1}\right) }{k^{2}\!+\!1}\vert e\rangle . \end{aligned}$$
(A4)
Table 3 Parameters for the constructing of the single-qubit gates on the NV-center. (Unit: GHz)

If one takes \(r=\sqrt{2}-1\) and \(\frac{1}{2}\Omega _{1}t\sqrt{r^{2}+1}=\pi \), the Eq. (A4) becomes

$$\begin{aligned} \exp \left( -iH_\mathrm{{e}}t\right) \vert g\rangle =-\frac{1}{2}\left( \vert g\rangle +\vert e\rangle \right) , \nonumber \\ \exp \left( -iH_\mathrm{{e}}t\right) \vert e\rangle =-\frac{1}{2}\left( \vert g\rangle -\vert e\rangle \right) , \end{aligned}$$
(A5)

which can be used to construct a H gate on the NV-center.

If one takes \(r=1\) and \(\frac{1}{2}\Omega _{1}t\sqrt{r^{2}+1}=\pi \), the Eq. (A4) becomes

$$\begin{aligned} \exp \left( -iH_\mathrm{{e}}t\right) \vert g\rangle =-\vert e\rangle , \nonumber \\ \exp \left( -iH_\mathrm{{e}}t\right) \vert e\rangle =-\vert g\rangle , \end{aligned}$$
(A6)

which can be used to construct a X gate on the NV-center.

If one takes \(r=\infty \) and \(\frac{1}{2}\Omega _{1}t\sqrt{r^{2}+1}=\pi \), the Eq. (A4) becomes

$$\begin{aligned} \exp \left( -iH_\mathrm{{e}}t\right) \vert g\rangle =\vert g\rangle , \nonumber \\ \exp \left( -iH_\mathrm{{e}}t\right) \vert e\rangle =-\vert e\rangle , \end{aligned}$$
(A7)

which can be used to construct a Z gate on the NV-center. Parameters for the construction of the single-qubit gate X, H, Z on the NV-center are shown in Table 3, while the other parameters are the same as the ones used for constructing the c-phase gate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, M., Tao, MJ., Zhou, ZR. et al. Controlled phase gate and Grover’s search algorithm on two distant NV-centers assisted by an NAMR. Quantum Inf Process 19, 187 (2020). https://doi.org/10.1007/s11128-020-02682-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02682-w

Keywords

Navigation