Skip to main content
Log in

Classical and quantum geometric information flows and entanglement of relativistic mechanical systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This article elaborates on entanglement entropy and quantum information theory of geometric flows of (relativistic) Lagrange–Hamilton mechanical systems. A set of basic geometric and quantum mechanics and probability concepts together with methods of computation are developed in general covariant form for curved phase spaces modelled as cotangent Lorentz bundles. The constructions are based on ideas relating the Grigori Perelman’s entropy for geometric flows and associated statistical thermodynamic systems to the quantum von Neumann entropy, classical and quantum relative and conditional entropy, mutual information, etc. We formulate the concept of the entanglement entropy of quantum geometric information flows and study properties and inequalities for quantum, thermodynamic and geometric entropies characterizing such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We follow such conventions: the “horizontal” indices, h-indices, run values \( i,j,k,\ldots =1,2,3,4;\) the vertical indices, v-vertical, run values \( a,b,c\ldots =5,6,7,8\); respectively, the v-indices can be identified/ contracted with h-indices 1, 2, 3, 4 for lifts on total (co) bundles, when \(\alpha =(i,a),\beta =(j,b),\gamma =(k,c),\ldots =1,2,3,\ldots 8.\) There are used letters labeled by an abstract left up/low symbol “\(\ ^{\shortmid }\)” (for instance, \(\ ^{\shortmid }u^{\alpha }\) and \(\ ^{\shortmid }g_{\alpha \beta }) \) in order to emphasize that certain geometric/ physical objects are defined on \(T^{*}V.\) Similar formulas can be derived on TV for geometric objects labeled without “\(\ ^{\shortmid }\).” Boldface symbols are used for geometric objects on spaces endowed with nonlinear connection structure [see below formula (3)].

  2. The coefficients of the canonical N-connection are computed following formulas \(\ ^{\shortmid }\widetilde{\mathbf {N}}=\left\{ \ ^{\shortmid }\widetilde{N} _{ij}:=\frac{1}{2}\left[ \{\ \ ^{\shortmid }\widetilde{g}_{ij},\widetilde{H} \}-\frac{\partial ^{2}\widetilde{H}}{\partial p_{k}\partial x^{i}}\ ^{\shortmid }\widetilde{g}_{jk}-\frac{\partial ^{2}\widetilde{H}}{\partial p_{k}\partial x^{j}}\ ^{\shortmid }\widetilde{g}_{ik}\right] \right\} \), where \(\ \ ^{\shortmid }\widetilde{g}_{ij}\) is inverse to \(\ \ ^{\shortmid } \widetilde{g}^{ab}\) (2). The canonical N-adapted (co) frames are

    $$\begin{aligned} \ ^{\shortmid }\widetilde{\mathbf {e}}_{\alpha }=\left( \ ^{\shortmid }\widetilde{ \mathbf {e}}_{i}=\frac{\partial }{\partial x^{i}}-\ ^{\shortmid }\widetilde{N} _{ia}(x,p)\frac{\partial }{\partial p_{a}},\ ^{\shortmid }e^{b}=\frac{ \partial }{\partial p_{b}}\right) ;\ \ ^{\shortmid }\widetilde{\mathbf {e}}^{\alpha }=\left( \ ^{\shortmid }e^{i}=\mathrm{d}x^{i},\ ^{\shortmid }\mathbf {e}_{a}=\mathrm{d}p_{a}+\ ^{\shortmid }\widetilde{N}_{ia}(x,p)\mathrm{d}x^{i}\right) , \end{aligned}$$

    being characterized by corresponding anholonomy relations \(\ [\ ^{\shortmid } \widetilde{\mathbf {e}}_{\alpha },\ ^{\shortmid }\widetilde{\mathbf {e}} _{\beta }]=\ ^{\shortmid }\widetilde{\mathbf {e}}_{\alpha }\ ^{\shortmid } \widetilde{\mathbf {e}}_{\beta }-\ ^{\shortmid }\widetilde{\mathbf {e}}_{\beta }\ ^{\shortmid }\widetilde{\mathbf {e}}_{\alpha }=\ ^{\shortmid }\widetilde{W} _{\alpha \beta }^{\gamma }\ ^{\shortmid }\widetilde{\mathbf {e}}_{\gamma },\) with anholonomy coefficients \(\widetilde{W}_{ia}^{b}=\partial _{a}\widetilde{ N}_{i}^{b},\) \(\widetilde{W}_{ji}^{a}=\widetilde{\Omega }_{ij}^{a},\) and \(\ ^{\shortmid }\widetilde{W}_{ib}^{a}=\partial \ ^{\shortmid }\widetilde{N} _{ib}/\partial p_{a}\) and \(\ ^{\shortmid }\widetilde{W}_{jia}= {\ ^{\shortmid }}\widetilde{\Omega }_{ija}.\) Such a frame is holonomic (integrable) if the respective anholonomy coefficients are zero.

  3. For simplicity, we shall write, for instance, \(\ ^{\shortmid }\widetilde{ \mathbf {N}}(\tau )\) instead of \(\ ^{\shortmid }\widetilde{\mathbf {N}}(\tau ,\ ^{\shortmid }u)\) if that will not result in ambiguities. Relativistic nonholonomic phase spacetimes can be enabled with necessary types double nonholonomic \((2+2)+(2+2)\) and \((3+1)+(3+1)\) splitting [17, 28, 35,36,37]. Local \((3+1)+(3+1)\) coordinates are labeled in the form \(\ ^{\shortmid }u=\{\ ^{\shortmid }u^{\alpha }=\ ^{\shortmid }u^{\alpha _{s}}=(x^{i_{1}},y^{a_{2}};p_{a_{3}},p_{a_{4}})=(x^{\grave{\imath } },u^{4}=y^{4}=t;p_{\grave{a}},p_{8}=E)\}\) for \(i_{1},j_{1},k_{1},\ldots =1,2;\) \( a_{1},b_{1},c_{1},\ldots =3,4;\) \(a_{2},b_{2},c_{2},\ldots =5,6;\) \( a_{3},b_{3},c_{3},\ldots =7,8.\) The indices \(\grave{\imath },\grave{j},\grave{k} ,\ldots =1,2,3,\) respectively, \(\grave{a},\grave{b},\grave{c},\ldots =5,6,7\) can be used for corresponding spacelike hyper surfaces on a base manifold and typical cofiber.

  4. Hereafter, we shall not write such dependencies in explicit form if that will not result in ambiguities.

  5. We use the symbol r for the replica parameter (and not n as in the typical works in information theory) because the symbol n is used in our works for the dimension of base manifolds.

References

  1. Preskill, J.: Lecture notes. http://www.theory.caltech.edu/~preskill/ph219/index.html#lecture

  2. Solodukhin, S.N.: Entanglement entropy of black holes. Living Rev. Relativ. 14, 8 (2011). arXiv:1104.3712

    Article  ADS  MATH  Google Scholar 

  3. Aolita, L., de Melo, F., Davidovich, L.: Opens-system dynamics of entanglement. Rep. Progr. Phys. 78, 042001 (2015). arXiv:1402.3713

    Article  ADS  Google Scholar 

  4. Ionicioiu, R.: Schrödinger’s cat: where does the entanglement come from? Quanta 6, 57–60 (2017). arXiv:1603.07986

    Article  MathSciNet  Google Scholar 

  5. Stoica, O.C.: Revisiting the black hole entropy and information paradox. Adv. High. Energy Phys., art. ID 4130417 (2018). arXiv:1807.05864

  6. Nishioka, T.: Entanglement entropy: holography and renormalization group. Rev. Mod. Phys. 90, 03500 (2018). arXiv:1801.10352

    Article  MathSciNet  Google Scholar 

  7. Witten, E.: Notes on some entanglement properties of quantum field theory. Rev. Mod. Phys. 90, 45003 (2018). arXiv:1803.04993

  8. Witten, E.: A mini-introduction to information theory. arXiv:1805.11965

  9. Ecker, C.: Entanglement Entropy from Numerical Holography, Ph.D. thesis. arXiv:1809.05529

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary edn. Cambridge University Press, Cambridge (2010)

  11. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). arXiv:quant-ph/0211074

    Article  ADS  Google Scholar 

  13. Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006). arXiv:hep-th/0510092

    Article  ADS  MathSciNet  Google Scholar 

  14. Fendley, P., Fisher, M.P.A., Nayak, C.: Topological entanglement entropy from the holographic partition function. J. Stat. Phys. 126, 1111 (2007). arXiv:cond-mat/0609072

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Van Raamsdonk, M.: Building up spacetime with quantum entanglement. Gen. Relat. Gravity 42, 2323 (2010) [Int. J. Mod. Phys. D 19, 2429 (2010) ]; arXiv:1005.3035

  16. Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortschr. Phys. 61, 781–811 (2013). arXiv:1306.0533

    Article  MathSciNet  MATH  Google Scholar 

  17. Vacaru, S.: Entropy functionals for nonholonomic geometric flows, quasiperiodic Ricci solitons, and emergent gravity. arXiv:1903.04920

  18. Vacaru, S., Bubuianu, L.: Exact solutions for E. Verlinde emergent gravity and generalized G. Perelman entropy for geometric flows. arXiv:1904.05149

  19. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

  20. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109

  21. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245

  22. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hamilton, R.S.: The Ricci flow on surfaces. Math Gen Relativ Contemp Math 71, 237–262 (1988)

    Article  MathSciNet  Google Scholar 

  24. Hamilton, R.S.: In: Surveys in Differential Geometry, vol. 2, pp. 7–136. International Press, Vienna (1995)

  25. Friedan, D.: Nonlinear Models in \(2+\varepsilon \) Dimensions, Ph.D. Thesis (Berkely) LBL-11517, UMI-81-13038 (1980)

  26. Friedan, D.: Nonlinear models in \(2+\varepsilon \) dimensions. Phys. Rev. Lett. 45, 1057–1060 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  27. Friedan, D.: Nonlinear models in \(2+\varepsilon \) dimensions. Ann. Phys. 163, 318–419 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bubuianu, L., Vacaru, S.: Black holes with MDRs and Bekenstein-Hawking and Perelman entropies for Finsler-Lagrange-Hamilton-spaces. Ann. Phys. N. Y. 404, 10–38 (2019). arXiv:1812.02590

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Vacaru, S.: Geometric information flows and G. Perelman entropy for relativistic classical and quantum mechanical systems [under elaboration]

  30. Cao, H.-D., Zhu, H.-P.: A complete proof of the Poincaré and geometrization conjectures–application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10, 165–495 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Morgan, J.W., Tian, G.: Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs, vol. 3. AMS, Providence (2007)

  32. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12, 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vacaru, S.: Locally anisotropic kinetic processes and thermodynamics in curved spaces. Ann. Phys. (N.Y.) 290, 83–123 (2001). arXiv:gr-qc/0001060

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Vacaru, S.: Spectral functionals, nonholonomic Dirac operators, and noncommutative Ricci flows. J. Math. Phys. 50, 073503 (2009). arXiv:0806.3814

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Rajpoot, S., Vacaru, S.: On supersymmetric geometric flows and R2 inflation from scale invariant supergravity. Ann. Phys. N. Y. 384, 20–60 (2017). arXiv:1606.06884

    Article  ADS  MATH  Google Scholar 

  36. Ruchin, V., Vacaru, O., Vacaru, S.: Perelman’s W-entropy and statistical and relativistic thermodynamic description of gravitational fields. Eur. Phys. J. C 77, 184 (2017). arXiv:1312.2580

    Article  ADS  Google Scholar 

  37. Gheorghiu, T., Ruchin, V., Vacaru, O., Vacaru, S.: Geometric flows and Perelman’s thermodynamics for black ellipsoids in R2 and Einstein gravity theories. Ann. Phys. N. Y. 369, 1–35 (2016). arXiv:1602.08512

    Article  ADS  MATH  Google Scholar 

  38. Vacaru, S.: On axiomatic formulation of gravity and matter field theories with MDRs and Finsler–Lagrange–Hamilton geometry on (co) tangent Lorentz bundles. arXiv:1801.06444

  39. Bubuianu, L., Vacaru, S.: Axiomatic formulations of modified gravity theories with nonlinear dispersion relations and Finsler–Lagrange–Hamilton geometry. Eur. Phys. J. C 78, 969 (2018)

    Article  ADS  Google Scholar 

  40. Vacaru, S.: Nonholonomic Ricci flows: II. Evolution equations and dynamics. J. Math. Phys. 49, 043504 (2008). arXiv:math.DG/0702598

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Vacaru, S.: The entropy of Lagrange–Finsler spaces and Ricci flows. Rep. Math. Phys. 63, 95–110 (2009). arXiv:math.DG/0701621

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67, 605–659 (1995), Erratum: 68 (1996) 313

  43. Quevedo, H.: Geometrothermodynamics. J. Math. Phys. 48, 013506 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Vacaru, S.: Nonholonomic relativistic diffusion and exact solutions for stochastic Einstein spaces. Eur. Phys. J. P. 127, 32 (2012)

    Article  Google Scholar 

  45. Castro Perelman, C.: Thermal relativity, corrections of black hole entropy, Born’s reciprocal relativity theory and quantum gravity. Can. J. Phys. (2019). https://doi.org/10.1139/cjp-2019-0034

    Article  Google Scholar 

  46. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bells theorem. Kafatos, M. (ed.) Bells Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Springer, Berlin (1989)

  47. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1141 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  49. Akraki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  50. Lieb, E.H., Urskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  51. Narnhofer, H., Thirring, W.E.: From relative entropy to entropy. Fizika 17, 257–265 (1985)

    Google Scholar 

  52. Umegaki, H.: Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math. Semin. Rep. 14, 59–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ohya, M., Pertz, D.: Quantum Entropy and Its Use [corrected second printing]. Springer, Berlin (2004)

    Google Scholar 

  55. Wolf, M.M., Verstraete, F., Hasings, M.B., Cirac, J.I.: Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Rényi, A.: On measures of entropy in information. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561 (1961)

  57. Zyczkowski, K.: Rényi extrapolation of Shannon entropy. Open Syst. Inf. Dyn. 10, 297–310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. Müller-Lennert, M., Dupius, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking channels. arXiv:1306.1586

  60. Adesso, G., Girolami, D., Serafini, A.: Measuring Gaussian quantum information and correlation using the Rényi entropy of order 2. Phys. Rev. Lett. 109, 190502 (2012)

    Article  ADS  Google Scholar 

  61. Beingi, S.: Sandwiched Rényi divergence satisfied data processing inequality. J. Math. Phys. 54, 122202 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Bekenstein, J.D.: Black holes and the second law. Nuovo Cim. Lett. 4, 737–740 (1972)

    Article  ADS  Google Scholar 

  63. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379, 99 (1996). arXiv:hep-th/9601029

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Faulkner, T., Guica, M., Harman, T., Myers, R.C., Van Raamsdonk, M.: Gravitation from entanglement and holographic CFTs. J. High Energy Phys. 1403, 051 (2015). arXiv:1312.7856

    ADS  MathSciNet  MATH  Google Scholar 

  68. Swingle, B.: Entanglement renormalization and holography. Phys. Rev. D 86, 065007 (2012). arXiv:0905.1317

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research develops the former programs partially supported by IDEI, PN-II-ID-PCE-2011-3-0256, CERN 2012-2014, DAAD-2015 and QGR 2016-2017 and contains certain results for new grant proposals. The UAIC affiliation for S. V. refers to a Project IDEI hosted by that University during 2012–2015, when the bulk of geometric ideas and methods of this and partner works were elaborated (to put a relevant co-/affiliation for further related results was the condition of that grant). Performing rigorous mathematical proofs and respective manuscripts request many years of technical work and further collaborations. S. V. is grateful to D. Singleton, S. Rajpoot and P. Stavrinos for collaboration and supporting his research on geometric methods in physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu I. Vacaru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The UAIC affiliation is for the director of a hosted Project IDEI2012-2-15. Address for post correspondence in 2019–2020 as a visitor senior researcher at YF CNU Ukraine is: 37 Haharina Yu. street, ap. 3, Chernivtsi, Ukraine, 58008.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacaru, S.I., Bubuianu, L. Classical and quantum geometric information flows and entanglement of relativistic mechanical systems. Quantum Inf Process 18, 376 (2019). https://doi.org/10.1007/s11128-019-2487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2487-z

Keywords

Mathematics Subject Classification

Navigation